Tag Archives: ac vacuum pump

China best Driving Brushless OEM Cartons TUV, UL, VDE Trolling AC Servo Motor vacuum pump engine

Product Description

Product Description

1. Stator size is optional
2. Safe, reliable, low noise, good starting, long life
3. Strong power
Rated voltage 110~120V/220~240V-50/60Hz  

ABOUT US

Greatupmotor group was established in 2006. We always focus on micro-motors for household and industrial electrical appliance. Currently, we have professional micro-motor factories separatlly located in ZheJiang & ZHangZhoug province. It has 50,000 square CHINAMFG plants and more than 500 employees, annual output  is 5 million pcs and has 10 million pcs annual producing capacity. After years development, we built a great reputation in the domestic and oversea market and have the trust from our global customers.
We started our business from shaded pole motors, after 10 years development, our products  is enlarged to BLDC motors, capacitor motors, synchronous motors, stepping motors, servo motors, and PMDC motors. Our products  are widely used for making refrigerators, freezers, micro-wave ovens, air warmers, air exhausters, ventilators,ovens, air filter, massage machines and many other equipments.
To design the lastest technology motors and meet our customers requirments, we have the very capable  R&D team, to ensure our products quality, we have very strict manage system for our production department & QC department, to make our cost lower, we have the very professional purchase department, We dedicate to make every details better than we could do.
To offer quick and better service to our customers in Australia and New Zeland, we set up branch office in Australia since 2017 with exprienced consultant to support the business, which will bring more customers to get know of us.
We will keep doing our job, move CHINAMFG step by step to make our business area wider and brighter.
 
Take Greatupmotor ,enjoy modern life!

Our company FAQ for you

(1) Q: What kind motors you can provide?
A:For now,we mainly provide Kitchen Hood Motor,DC Motor,Gear Motor,Fan Motor Refrigerator Motor,Hair Dryer Motor Blender Motor Mixer Motor,
Shade Pole Motor,Capacitor Motor,BLDC Motor PMDC Motor,Synchronous Motor,Stepping Motor etc.

(2) Q: Is it possible to visit your factory
A: Sure. But please kindly keep us posted a few days in advance. We need to check our
schedule to see if we are available then.

(3) Q: Can I get some samples
A: It depends. If only a few samples for personal use or replacement, I am afraid it will
be difficult for us to provide, because all of our motors are custom made and no stock
available if there is no further needs. If just sample testing before the official order and
our MOQ, price and other terms are acceptable, we’d love to provide samples.

(4) Q: Is there a MOQ for your motors?
A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 22/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

How does the lack of brushes in brushless AC motors contribute to their longevity?

The absence of brushes in brushless AC motors significantly contributes to their longevity and overall durability. Here’s how:

1. Reduced Wear and Tear: Brushes and commutators in traditional brushed motors are prone to wear and tear due to the constant friction and mechanical contact. As the brushes make contact with the commutator, they experience abrasion and gradually wear down over time. In brushless AC motors, the lack of brushes eliminates this source of wear, resulting in reduced mechanical stress on the motor components.

2. Elimination of Brush Dust Accumulation: Brushed motors generate carbon dust as the brushes wear down. This dust can accumulate on the commutator and other motor parts, potentially causing electrical shorts, sparking, and reduced motor performance. In brushless AC motors, the absence of brushes eliminates the generation of carbon dust, reducing the risk of dust accumulation and related issues.

3. Minimized Brush Sparks: Brushes in brushed motors can produce sparks during operation, leading to electrical arcing and potential damage to the commutator and brushes themselves. These sparks can also introduce electrical noise and interfere with sensitive electronic components. Brushless AC motors, with their brushless design, eliminate the occurrence of brush sparks, resulting in smoother and quieter operation.

4. Improved Commutation: In brushed motors, the commutator is responsible for transferring electrical power to the rotor windings through the brushes. This mechanical commutation introduces limitations in terms of speed, torque, and reliability. In contrast, brushless AC motors employ electronic commutation, which is more precise and efficient. Electronic commutation eliminates the need for physical contact, allowing for greater control over the motor’s performance and reducing the potential for commutation-related issues.

5. Enhanced Electrical Efficiency: Brushes and commutators in brushed motors can cause energy losses due to friction and electrical resistance. These losses result in reduced overall motor efficiency. By eliminating brushes and commutators, brushless AC motors minimize energy losses, leading to improved electrical efficiency and reduced heat generation.

Collectively, these factors contribute to the longevity of brushless AC motors. The absence of brushes reduces mechanical wear, eliminates brush-related issues such as dust accumulation and sparks, allows for more precise electronic commutation, and improves overall electrical efficiency. As a result, brushless AC motors can operate reliably for longer periods with minimal maintenance requirements, making them a durable and long-lasting solution for various applications.

brushless ac motor

How does the efficiency of a brushless AC motor compare to other motor types?

The efficiency of a motor refers to its ability to convert electrical power into mechanical power with minimal losses. Brushless AC motors are known for their high efficiency compared to other motor types. Here’s a detailed explanation of how the efficiency of brushless AC motors compares to other motor types:

1. Brushed DC Motors: Brushed DC motors, which use carbon brushes and a commutator, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed DC motors introduce friction and electrical losses, reducing overall efficiency. Additionally, the brush contact can cause sparking and wear over time, further impacting efficiency. Brushless AC motors, which eliminate the brushes and commutator, offer higher efficiency due to reduced friction and electrical losses.

2. Induction Motors: Induction motors are a type of AC motor commonly used in various applications. While induction motors are generally efficient, brushless AC motors can offer even higher efficiency. Brushless AC motors benefit from the absence of rotor windings and the elimination of energy losses associated with rotor resistance in induction motors. Additionally, brushless AC motors can achieve higher power factor and better control, further contributing to their overall efficiency.

3. Brushed AC Motors: Brushed AC motors, which use brushes and a commutator similar to brushed DC motors, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed AC motors introduce friction, wear, and electrical losses, reducing overall efficiency. Brushless AC motors eliminate these components, resulting in higher efficiency and improved performance.

4. Permanent Magnet Synchronous Motors (PMSMs): Brushless AC motors, also known as permanent magnet synchronous motors (PMSMs), are highly efficient compared to other motor types. PMSMs utilize permanent magnets on the rotor, eliminating the need for rotor windings and associated losses. The absence of brushes and commutators, as well as the use of advanced control techniques, contribute to the high efficiency of brushless AC motors. PMSMs are widely used in applications that require high efficiency, such as electric vehicles, industrial automation, and renewable energy systems.

It’s important to note that the efficiency of a motor can also depend on factors such as motor design, size, operating conditions, and control mechanisms. While brushless AC motors generally offer high efficiency, specific motor models and variations may vary in their efficiency performance. It is advisable to refer to the motor manufacturer’s specifications and efficiency data for accurate comparisons and selection of the most suitable motor for a given application.

brushless ac motor

Can brushless AC motors be retrofitted into systems designed for brushed motors?

Yes, in many cases, brushless AC motors can be retrofitted into systems that were originally designed for brushed motors. However, there are several factors to consider when retrofitting a brushless AC motor into a system designed for brushed motors. Here’s a detailed explanation:

1. Physical Compatibility: The physical dimensions and mounting arrangements of the brushless AC motor need to be compatible with the existing system. Careful consideration should be given to ensure that the brushless motor can fit within the available space and can be properly mounted in the system without any modifications to the structure or frame.

2. Electrical Compatibility: Brushed motors and brushless AC motors have different electrical characteristics. Brushed motors typically operate on direct current (DC), while brushless AC motors require alternating current (AC) power and often need electronic motor controllers for proper operation. The electrical infrastructure of the system should be evaluated to determine if it can support the power requirements and control mechanisms of the brushless AC motor.

3. Control System: Brushless AC motors require specialized control systems to operate effectively. These control systems typically include motor controllers or drives that provide the necessary power and control signals. The existing control system in the system designed for brushed motors may need to be modified or replaced to accommodate the requirements of the brushless AC motor. This may involve rewiring, integrating new control components, or updating the software interface.

4. Interface Compatibility: The interface between the motor and the system, such as shaft dimensions, coupling mechanisms, or load requirements, must be evaluated for compatibility. If the brushless AC motor has different shaft dimensions or requires different coupling mechanisms, appropriate adapters or modifications may be necessary to ensure a proper connection with the system’s load or driven equipment.

5. Performance Requirements: Consideration should be given to whether the performance characteristics of the brushless AC motor are suitable for the intended application in the retrofitted system. This includes factors such as torque, speed range, efficiency, and control capabilities. It is important to ensure that the brushless AC motor can meet or exceed the performance requirements of the system previously served by the brushed motor.

6. Cost and Feasibility: Retrofitting a system designed for brushed motors with brushless AC motors can involve costs related to motor procurement, modification of the system, and integration of control components. A cost-benefit analysis should be performed to determine the feasibility and economic viability of the retrofitting project.

While it is possible to retrofit brushless AC motors into systems designed for brushed motors, it is recommended to consult with motor and system experts or engineers to assess the compatibility, feasibility, and potential challenges of the retrofitting process. Their expertise can help ensure a successful transition to brushless AC motors while maximizing the benefits and performance of the retrofitted system.

China best Driving Brushless OEM Cartons TUV, UL, VDE Trolling AC Servo Motor   vacuum pump engine	China best Driving Brushless OEM Cartons TUV, UL, VDE Trolling AC Servo Motor   vacuum pump engine
editor by CX 2024-05-17

China Hot selling Energy-Efficient 1/4HP Low-Voltage Brushless DC Motor for Condenser Fan Coil Units and AC Cooling vacuum pump oil near me

Product Description

Brushless DC Condensor Motor for Fan Coil Unit/Air Conditioner Cooling

The above-mentioned specification is the representative specification, it can also be designed and manufactured according to customer requirements.

Main Technical Data of Brushless DC Condensor Motor for Fan Coil Unit/Air Conditioner Cooling:

Model
 
Vol (V)
 
AMPS (A) RPM (r/min)
 
Output (W)
 
Vsp(V)
ZWS006571SDD
 
Vdc 310 0.13 300-1500 60 0-6.5
ZWS006571SDD
 
Vdc 164 0.26 300-1600 60 0-6.5
ZWS571510SDD
 
Vdc 310 0.33 300-1500 105 0-6.5
ZWS571510SDD
 
Vdc 164 0.52 300-1600 105 0-6.5
ZWS571571SDD
 
Vdc 310 0.33 300-1500 200 0-6.5
ZWS571571SDD
 
Vdc 164 0.52 300-1600 200 0-6.5

 

low noise IP 44 protection level ,
Locked rotor protection,
open phase protection,
over-voltage protection,
over-current overheating protection
High efficiency,
wide speed adjustment range, 
VSP mode
programmable

 

Materials
        Silent bearing,driving board,copper wire
 

Are you tired of dealing with noisy, power-hungry air conditioner fan motors in your home or office?
If so, we have the perfect solution for you: our brushless high-efficiency conditioner fan motor.

Our motor is designed to be more energy-efficient than traditional fan motors, which means you’ll save money on your power bills while enjoying the same cooling performance. Plus, it’s brushless, so it’s much quieter than standard motors and has a longer lifespan.

Here are some of the benefits of choosing our brushless high-efficiency conditioner fan motor:
1) Energy-efficient: Save money on your power bills while enjoying cool air.
2) Quiet: Say goodbye to noisy fan motors that disrupt your peace and quiet.
3) Long lifespan: Our motor is designed to last for years, so you won’t have to worry about replacing it anytime soon.
4) Environmentally friendly: Our motor is designed with sustainability in mind, so you can feel good about choosing an eco-friendly option

We are looking forward to helping you stay cool and comfortable all year round.

Application

    Application
       
      Fan Coil Unit
                  VRF Indoor unit and CRAC

 

Product Parameters

Performance:

    DC 310V                                                                   
      Power output up to:200W
      Variable operation speed

Drawing of Brushless DC Condensor Motor for Fan Coil Unit/Air Conditioner Cooling:

 

Terms

Terms:
    1. Trade Terms: FOB, CIF, CNF, EXW, DOOR TO DOOR.

             2. Payment Terms: T/T, L/C, Western Union.

                      3. Payment Condition: 50% deposit in advance, 50% balance before delivery.

                              4. Delivery Time: 15-30 days after deposit (if T/T).

                                       5. Shipping: By sea, by air and by express delivery

 

Company Profile

       HangZhou CHINAMFG Electric Co., Ltd was established in 2013. Is a manufacturer focused on innovative motor solutions for the residential and commercial CHINAMFG and refrigeration industries.
       The company has a skilled R & D team, and has more than 10 years of motor research and development, design, production and sales experience.With an annual output of 1 million motor production capacity.
       The new generation of BLDC motors and EC motors developed by CHINAMFG use a unique high flux and shock absorption design, coupled with high-quality bearings, so that the motor has more torque in the same. CARLYI branded motors have been approved by CCC, ISO9001, CE, RoHS certification.

 

Packaging & Shipping

Packing and Xihu (West Lake) Dis. of Brushless DC Condensor Motor for Fan Coil Unit/Air Conditioner Cooling:

FAQ

FAQ of Brushless DC Condensor Motor for Fan Coil Unit/Air Conditioner Cooling:

Q1. What types of motors does your company manufacture?
A: We specialize in manufacturing motors designed for residential, commercial CHINAMFG (Heating, Ventilation, and Air Conditioning), and refrigeration equipment. These motors are engineered to meet the specific demands of these applications.

Q2. Are your motors energy-efficient?
A: Yes, our motors are designed with a focus on energy efficiency. We employ advanced technologies and materials to ensure that our motors consume minimal energy while delivering optimal performance.

Q3. Can you provide custom motor solutions?
A: Absolutely! We understand that each application may have unique requirements. Our team is experienced in developing custom motor solutions tailored to your specific needs. Contact our sales department to discuss your customization requirements.

Q4. What is the typical lifespan of your motors?
A: Our motors are built to last. The lifespan of our motors varies depending on usage and maintenance, but they are designed for long-term reliability and durability, especially when properly maintained.

Q5. Do you provide technical support and assistance?
A: Yes, we offer comprehensive technical support and assistance. Our team of experts is available to answer your questions, provide guidance on motor selection, and offer troubleshooting assistance whenever needed.

Q6. Are your motors compliant with industry standards and regulations?
A: Yes, our motors are manufactured to meet or exceed industry standards and regulations. We prioritize safety, efficiency, and environmental compliance in our motor designs. We conduct inspections in accordance with the ISO9001 standard and are overseen by our experienced QC staff.

Q7. How do I request a quote or place an order?
A: You can request a quote or place an order by contacting our sales department through our website or by CHINAMFG out to our dedicated sales representatives. We will provide you with a competitive quote and guide you through the ordering process.

Q8. Where is your company located, and do you ship internationally?
A: Our company is headquartered in HangZhou City, ZheJiang Province, China. We offer international shipping to serve customers worldwide. Contact us for shipping and distribution details specific to your region.

Q9. Do you have a warranty policy for your motors?
A: Yes, we offer warranties on our motors to ensure customer satisfaction and peace of mind. For the motors, we have a long enough 18-month guarantee, and for the service, we offer 24-hour technical support and barrier-free communication.

Q10: How long does it take to prepare samples and process batch orders?
A: Sample preparation usually takes 3 days if we have it in hand and around a week for custom samples. Batch order production typically spans 15-30 days, with newly developed items possibly requiring an extra 2 weeks.

If you have any more specific questions or need further assistance, please feel free to get in touch with our team.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Household Appliances, Fan Coil Unit/Vrf Indoor Unit and Crac
Operating Speed: Adjust Speed
Excitation Mode: Excited
Samples:
US$ 70/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless ac motor

How does the lack of brushes in brushless AC motors contribute to their longevity?

The absence of brushes in brushless AC motors significantly contributes to their longevity and overall durability. Here’s how:

1. Reduced Wear and Tear: Brushes and commutators in traditional brushed motors are prone to wear and tear due to the constant friction and mechanical contact. As the brushes make contact with the commutator, they experience abrasion and gradually wear down over time. In brushless AC motors, the lack of brushes eliminates this source of wear, resulting in reduced mechanical stress on the motor components.

2. Elimination of Brush Dust Accumulation: Brushed motors generate carbon dust as the brushes wear down. This dust can accumulate on the commutator and other motor parts, potentially causing electrical shorts, sparking, and reduced motor performance. In brushless AC motors, the absence of brushes eliminates the generation of carbon dust, reducing the risk of dust accumulation and related issues.

3. Minimized Brush Sparks: Brushes in brushed motors can produce sparks during operation, leading to electrical arcing and potential damage to the commutator and brushes themselves. These sparks can also introduce electrical noise and interfere with sensitive electronic components. Brushless AC motors, with their brushless design, eliminate the occurrence of brush sparks, resulting in smoother and quieter operation.

4. Improved Commutation: In brushed motors, the commutator is responsible for transferring electrical power to the rotor windings through the brushes. This mechanical commutation introduces limitations in terms of speed, torque, and reliability. In contrast, brushless AC motors employ electronic commutation, which is more precise and efficient. Electronic commutation eliminates the need for physical contact, allowing for greater control over the motor’s performance and reducing the potential for commutation-related issues.

5. Enhanced Electrical Efficiency: Brushes and commutators in brushed motors can cause energy losses due to friction and electrical resistance. These losses result in reduced overall motor efficiency. By eliminating brushes and commutators, brushless AC motors minimize energy losses, leading to improved electrical efficiency and reduced heat generation.

Collectively, these factors contribute to the longevity of brushless AC motors. The absence of brushes reduces mechanical wear, eliminates brush-related issues such as dust accumulation and sparks, allows for more precise electronic commutation, and improves overall electrical efficiency. As a result, brushless AC motors can operate reliably for longer periods with minimal maintenance requirements, making them a durable and long-lasting solution for various applications.

brushless ac motor

How does the speed control mechanism work in a brushless AC motor?

In a brushless AC motor, the speed control mechanism relies on precise control of the motor’s electrical power input. By adjusting the frequency and voltage of the AC power supplied to the motor, the speed of the motor can be controlled. Here’s a detailed explanation of how the speed control mechanism works:

1. Electronic Commutation: Brushless AC motors use electronic commutation to control the timing and duration of current flow in the stator windings. The commutation process determines which winding is energized and in what sequence, creating a rotating magnetic field that interacts with the rotor magnets. By controlling the electronic commutation, the speed of the motor can be regulated.

2. Pulse Width Modulation (PWM): Pulse width modulation is commonly used to control the voltage supplied to the motor. In PWM control, the voltage is rapidly switched on and off at a fixed frequency. By varying the width (duration) of the on-time or off-time periods, the effective voltage applied to the motor can be adjusted. This modulation technique allows for precise control of the motor’s speed.

3. Speed Feedback: To maintain the desired speed, brushless AC motor control systems often incorporate speed feedback mechanisms. These mechanisms typically use encoders, tachometers, or other speed sensors to measure the actual speed of the motor. The feedback signal is compared to the desired speed setpoint, and the control system adjusts the power supplied to the motor accordingly to maintain the desired speed.

4. Control Algorithms: Control algorithms are used to process the speed feedback signal and generate control signals for the motor. These algorithms can be implemented in dedicated motor control chips or in software running on microcontrollers. The control algorithms take into account the speed error (difference between the desired speed and actual speed) and adjust the power input to the motor to minimize the error and maintain a stable speed.

5. Variable Frequency Drive (VFD): In many applications, brushless AC motors are driven by variable frequency drives (VFDs). VFDs convert the incoming AC power into DC power and then generate AC power with variable frequency and voltage. By adjusting the frequency and voltage output of the VFD, the speed of the motor can be controlled. VFDs often incorporate advanced control algorithms and feedback mechanisms to achieve precise speed control.

6. Load and Torque Considerations: It’s important to consider the load and torque requirements when controlling the speed of a brushless AC motor. The control system should be designed to handle changes in load and adjust the power input accordingly to maintain the desired speed. Additionally, some control systems may incorporate torque control mechanisms to regulate the motor’s torque output along with speed control.

By utilizing electronic commutation, pulse width modulation, speed feedback, control algorithms, and variable frequency drives, brushless AC motors can achieve accurate and dynamic speed control. This speed control mechanism allows the motor to adapt to different operating conditions and meet the specific speed requirements of various applications.

brushless ac motor

What role does the inverter play in the operation of a brushless AC motor?

The inverter plays a crucial role in the operation of a brushless AC motor. It is responsible for converting the DC power from an external power source into the AC power required to drive the motor. Here’s a detailed explanation of the role of the inverter in the operation of a brushless AC motor:

The inverter serves as the interface between the power supply and the brushless AC motor. It consists of power electronic devices, such as insulated-gate bipolar transistors (IGBTs) or metal-oxide-semiconductor field-effect transistors (MOSFETs), which control the switching of electrical signals to generate the desired AC voltage and frequency for the motor.

1. Power Conversion: The primary function of the inverter is to convert the DC power from the external power source, such as a battery or power grid, into the three-phase AC power required by the brushless AC motor. The inverter achieves this conversion by rapidly switching the DC voltage on its input side to create a series of voltage pulses, which are then filtered and shaped to generate the desired AC waveform.

2. Variable Frequency Control: In addition to converting DC power to AC power, the inverter allows for precise control of the motor’s speed and torque by varying the frequency of the generated AC voltage. By adjusting the switching frequency of the inverter’s power electronic devices, the inverter can change the frequency of the AC voltage supplied to the motor. This variable frequency control enables smooth speed regulation and efficient operation of the brushless AC motor across a wide range of speeds.

3. Motor Synchronization: The inverter synchronizes its output voltage and frequency with the rotor position of the brushless AC motor. This synchronization is crucial for accurate and efficient motor operation. The inverter uses position sensors, such as Hall effect sensors or encoders, to detect the rotor position and adjust the timing of the switching signals accordingly. By maintaining proper synchronization, the inverter ensures that the magnetic fields produced by the motor’s stator windings interact optimally with the rotor’s permanent magnets, resulting in smooth and efficient motor performance.

4. Control and Protection: The inverter includes control circuitry and algorithms to manage the operation of the brushless AC motor. It receives commands or feedback signals from the motor control system or user interface and adjusts the voltage and frequency output accordingly. The inverter also incorporates various protection mechanisms to safeguard the motor and itself from abnormal conditions such as overcurrent, overvoltage, or overheating. These protection features help prevent damage to the motor and ensure safe and reliable operation.

5. Energy Regeneration: In some applications, brushless AC motors can act as generators when decelerating or during braking. The inverter can take advantage of this regenerative capability by converting the electrical energy generated by the motor back into usable power. The inverter can feed this regenerated energy back to the power supply or store it in energy storage devices, such as capacitors or batteries, for later use. This energy regeneration feature improves overall system efficiency and can be particularly beneficial in applications where frequent deceleration or braking occurs.

The inverter is an integral component of the brushless AC motor system, responsible for converting the DC power supply into the appropriate AC power to drive the motor. Its ability to control voltage, frequency, and synchronization ensures precise and efficient motor operation. Proper selection, design, and configuration of the inverter are essential to optimize the performance, reliability, and overall system efficiency of brushless AC motor applications.

China Hot selling Energy-Efficient 1/4HP Low-Voltage Brushless DC Motor for Condenser Fan Coil Units and AC Cooling   vacuum pump oil near me		China Hot selling Energy-Efficient 1/4HP Low-Voltage Brushless DC Motor for Condenser Fan Coil Units and AC Cooling   vacuum pump oil near me
editor by CX 2024-05-16

China manufacturer AC 5kw 8kw 10kw Electric Car Motor Brushless Motor vacuum pump adapter

Product Description

 

 

Detailed Photos

Product Parameters

 

Model battery voltage
V
Rated speed
rpm
Peak Speed
rpm
Rated Power
kw
Peak Power
kw
Back EMF
v
Peak Current
A
Rated Torque
N.m
Peak Torque
N.m
Gearbox Ratio Cooling Type
Powertrain:Motor and controller 2 in one
MC6-46-HP 60 2500 6000 3 6 10.9 190 11.5 46 / natural cooling
MC10-75-HP 72 3410 7500 10 20 12 320 28 85 / natural cooling
MC10-60-48-HP 48 3500 6500 6 10 11.55 295 16.4 60 / natural cooling
MC20-80-96-HP 96 4500 7500 10 20 12 320 21 85 / natural cooling
Powertrain:Motor and gearbox 2 in 1 with controller
P6-46-HP 60 2500 6000 3 6 10.9±0.5 190 11.5 46 8.33 natural cooling
P6-46-HP 72 2500 6000 3 6 10.9±0.5 190 11.5 46 8.33 natural cooling
P8-60-HP48 48 3000 6000 4 8 / 300 12.7 60 7.964 natural cooling
P8-60-HP60 60 3000 6500 4 8 / 300 12.7 60 7.964 natural cooling
P10-75-HP 60 3000 7500 5 10 12.5±0.5 270 16 75 8.33 natural cooling
P10-75-HP 72 3000 7500 5 10 12.5±0.5 270 16 75 8.33 natural cooling
P15-100-HP 60 4000 7500 7.5 15 12.2±0.5 400 18 100 8.33 natural cooling
P20-70-HP 96 5200 9300 12 20 9.5 350 22 70 8.34 natural cooling
P20-80-HP 96 4500 7500 10 20 12 320 21 80 8.34 natural cooling
P30-95-JM 144 4500 8700 15 30 14 320 32 95 8.34 natural cooling
Powertrain: Motor gearbox and controller 3 in one
P25-90-HP 108 4500 8000 15 25 14 320 32 90 8.34 natural cooling
P30-105-HP 320 4500 8000 15 30 42 120 32 105 8.34 natural cooling
P30-95-HP 144 4500 8700 15 30 14 320 32 95 8.34 natural cooling
P25-95-108-HP 108 4775 8000 14 25 12.6 400 26 95 8.34 natural cooling
P25-100-144-HP 144 4775 8000 13 25 12.6 370 26 100 8.34 natural cooling
P30-105-320-FHP 320 4500 7700 15 30 42 120 32 105 8.34 Controller with fan
P35-100-144-HP 144 4500 8700 15 35 14 350 32 100 8.34 water cooling
P45-120-HP 320 4050 12000 20 45 24.5 235 47 120 10.3 water cooling
P70-165-JL 336 4050 12000 30 70 32.85 255 70 165 10.5 water cooling
P100-220-HP 360 5000 14000 50 100 31.6 355 95.5 220 10 water cooling
P120-260-HP 360 5000 14000 60 120 28.5 460 114 260 10 water cooling

 

Our Advantages

XIHU (WEST LAKE) DIS. POWER master 3 core technologies of electric vehicle power assembly: motor, electric control and reducer; and XIHU (WEST LAKE) DIS. POWER has a global vision, adopts international advanced management concept, integrates R & D, manufacturing, sales and service, and provides customers with low-speed, high torque, high integration, high-speed and low noise, strong overload capacity, high protection level, system maintenance free The shape is exquisite and beautiful, the protection function is complete, the vector control and various Parameters can be adjusted according to the customer requirements.

Company Profile

Xihu (West Lake) Dis. Power Co.,Ltd. was founded in March,2571. It is a national Hi-Tech enterprise which specialized in providing energy-saving system.

Xihu (West Lake) Dis. Power Co., Ltd. consists of Xihu (West Lake) Dis. Power (ZheJiang ) Co., Ltd., Xihu (West Lake) Dis. Power (ZheJiang ) Co., Ltd., and Xihu (West Lake) Dis. Power (HangZhou) Co., Ltd. The headquarters is located at No. 26, Yingbin Avenue, National High-tech Zone, HangZhou, ZheJiang . The company can annually produce 250,000 electric vehicle powertrains, 300,000 electric vehicle motors, and 300,000 controllers.

Xihu (West Lake) Dis. Power has a high-quality technical R&D team of more than 120 people, with high-tech talents selected from the National Ten Thousand Talents Program, National Science and Technology Innovation and Entrepreneurship Talents, ZheJiang Science and Technology Entrepreneurship Leaders, Xihu (West Lake) Dis.ang Top Talents, and Xihu (West Lake) Dis.ang Scarce Talents. And independently developed electric vehicle powertrains, permanent magnet synchronous motors, AC asynchronous motors, permanent magnet synchronous controllers, AC asynchronous controllers and other products, serving electric passenger cars, electric logistics vehicles, electric buses, electric minibuses, New energy vehicle industries such as electric forklifts, electric engineering vehicles, and electric logistics vehicles. Xihu (West Lake) Dis. Power has mastered the core technologies of electric vehicle motors, controllers, reducers and powertrains, established the ZheJiang Engineering Technology R&D Center, and listed the ZheJiang Provincial Key Laboratory, with more than 120 sets of experimental benches and experimental equipment. Design and development, performance verification, durability test, IP67 waterproof and dustproof test, mechanical vibration test, mechanical shock test, and full working conditions NVH experiment, high and low temperature cyclic impact experiment, high and low temperature loading operation experiment and other product design verification and testing capabilities.

Xihu (West Lake) Dis. Power has built an electric vehicle powertrain automated assembly workshop, an electric motor automated assembly workshop, a controller CHINAMFG automatic placement workshop, an automated winding and embedding workshop, a casting processing center, an online spraying center, a complete machine performance digital inspection center, and Created a zero-defect quality assurance system to provide customers with perfect products and high-quality services. Xihu (West Lake) Dis. Power has obtained the automotive industry IATF16949:2016 quality management system certification, ISO9001:2015 quality management system certification, ISO14001:2015 environmental management system certification, ISO45001:2018 occupational health and safety management system certification, EU product safety CE certification, and U.S. product safety Performance UL certification, Korean electrical product safety KC certification, etc.

At present, the company has formed a research and development platform suitable for 6 categories of electric drive products such as pure electric passenger vehicles, pure electric commercial vehicles, pure electric special vehicles, extended-range hybrids, electric vehicles, and intelligent unmanned vehicles, forming a 1.2kw- 500kw power series products, supporting the development of more than 260 varieties of electric power system products for domestic and foreign vehicle companies and power system integrators. In terms of application in the electric vehicle market, the company’s products are used in electric vehicles such as FIAT, Xpeng, BAIC, Geely, BYD, Changan, Xihu (West Lake) Dis.feng, Xihu (West Lake) Dis., Haima, Zotye, GM, King Long, Xihu (West Lake) Dis., Foton, Great Wall, Weimar and other electric vehicles. It has been successfully applied and has been among the best in market share for many years. The company’s products sell well all over the country, and are exported to Europe, America, India, the Middle East, Africa and Southeast Asia.

Xihu (West Lake) Dis. Power, Innovation Technology!

 

FAQ

Q1. What are your terms of packing?
A: We pack our goods in neutral wooden boxes and paper cartons. If you have a legally registered brand, we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What are your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll send you the photos of the products and packages before you pay the balance. For big orders, we accept L/C.

Q3. What are your terms of delivery?
A: EXW, FOB.

Q4. How about your delivery time?
A: It will take 15 to 45days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce your samples or technical drawings. We can produce the molds and fixtures in-house.

Q6. Do you test all your goods before delivery?
A: Yes, we have a 100% test before delivery, if necessary we can send an inspection report before delivery.

Q7. How long is your warranty period?
A: In general,2 years after deliveried
Q8. Do you have any certificates?
A: CE,SGS,ISO9001,IATF16949,UL,Etc

Q9. Do you have the import & export license?
We are official import & export licensed manufacturer.

Certifications

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Car
Operating Speed: Low Speed
Operation Mode: Electric Motor
Magnetic Structure: Permanent Magnet
Function: Driving
Structure: Rotating Armature Type (Pole Fixed)

brushless ac motor

What is a brushless AC motor, and how does it differ from traditional brushed motors?

A brushless AC motor, also known as a brushless alternating current motor, is a type of electric motor that operates without the use of brushes and commutators found in traditional brushed motors. Instead of using brushes to transfer electrical power to the rotor, brushless AC motors utilize electronic commutation to control the motor’s operation.

The main differences between brushless AC motors and traditional brushed motors are as follows:

  1. Brushes and commutators: In traditional brushed motors, the rotor contains brushes that come into contact with a commutator, which transfers electrical power to the rotor windings. The brushes and commutators introduce friction and wear, requiring regular maintenance and replacement. In contrast, brushless AC motors eliminate the need for brushes and commutators, resulting in reduced friction, lower maintenance requirements, and increased motor lifespan.
  2. Electronic commutation: Brushless AC motors employ electronic commutation through the use of sensors and an electronic controller. The controller monitors the rotor position and switches the current in the motor windings at precise moments to generate the desired rotating magnetic field. This electronic commutation allows for more precise control of the motor’s speed, torque, and direction of rotation.
  3. Efficiency and performance: Brushless AC motors generally offer higher efficiency compared to traditional brushed motors. The elimination of brushes and commutators reduces energy losses, resulting in improved overall motor efficiency. Additionally, brushless AC motors can provide smoother and quieter operation due to their electronic commutation and precise control of the motor’s performance.
  4. Size and weight: Brushless AC motors are often more compact and lightweight compared to traditional brushed motors with similar power ratings. The absence of brushes and commutators allows for a more streamlined motor design, making brushless AC motors suitable for applications with limited space or weight restrictions.
  5. Reliability and lifespan: Brushless AC motors tend to have a longer lifespan and higher reliability due to the absence of brushes that can wear out over time. The elimination of brush-related issues, such as brush sparking and brush dust accumulation, contributes to the improved reliability and durability of brushless AC motors.

Brushless AC motors are widely used in various applications, including industrial automation, robotics, electric vehicles, HVAC systems, and more. Their superior efficiency, precise control, reduced maintenance requirements, and longer lifespan make them a preferred choice in many modern motor-driven systems.

brushless ac motor

What types of sensors are typically used in brushless AC motor control systems?

In brushless AC motor control systems, several types of sensors are commonly used to provide feedback and enable precise control over motor operation. These sensors help determine the position, speed, and other parameters of the motor. Here are the typical sensors used in brushless AC motor control systems:

  • Hall Effect Sensors: Hall effect sensors are widely used in brushless AC motor control systems. These sensors detect the position of the rotor magnets by measuring changes in the magnetic field. Hall effect sensors are placed strategically around the motor, typically in the stator, to detect the magnet poles as they pass by. The information from the Hall effect sensors is used by the controller to determine the rotor position and control the timing of current switching in the stator windings.
  • Resolver: A resolver is an electromagnetic sensor that provides rotor position feedback in brushless AC motor control systems. It consists of a rotor and a stator, both containing windings. The rotor winding is excited with an AC voltage, while the stator winding is used to detect the position of the magnetic field. By measuring the phase difference between the rotor and stator windings, the resolver sensor provides accurate angular position information to the controller.
  • Encoder: Encoders are commonly used in brushless AC motor control systems to provide precise position and speed feedback. There are two main types of encoders: optical encoders and magnetic encoders. Optical encoders use a light source and a patterned disc to detect rotational position and speed. Magnetic encoders, on the other hand, utilize magnetic fields and sensors to measure position and speed. Encoders provide high-resolution feedback, enabling precise control over the motor’s operation.
  • Current Sensors: Current sensors are used to measure the current flowing through the stator windings of the brushless AC motor. They provide feedback to the controller, allowing it to monitor and control the current levels accurately. By measuring the current, the controller can adjust the timing and duration of current switching, optimizing the motor’s performance and ensuring efficient operation.
  • Temperature Sensors: Temperature sensors are often integrated into brushless AC motor control systems to monitor the motor’s temperature. They provide feedback to the controller, allowing it to implement thermal protection measures when the motor exceeds safe operating temperatures. Temperature sensors help prevent motor overheating and potential damage, ensuring the motor operates within its safe temperature limits.

These sensors play a crucial role in brushless AC motor control systems by providing the necessary feedback for precise control over the motor’s operation. They enable the controller to determine rotor position, monitor current levels, measure speed, and implement various control strategies to optimize motor performance. The integration of these sensors allows for efficient and reliable operation of brushless AC motors in a wide range of applications.

brushless ac motor

How do you troubleshoot common issues with brushless AC motors?

When troubleshooting common issues with brushless AC motors, it’s important to systematically identify and address potential problems. Here’s a detailed explanation of the steps involved in troubleshooting common issues with brushless AC motors:

  1. Check Power Supply: Verify that the power supply to the motor is functioning correctly. Ensure that the voltage and frequency supplied to the motor match the specifications provided by the manufacturer. Check for any loose connections, blown fuses, or tripped circuit breakers that may be interrupting the power supply.
  2. Inspect Wiring and Connections: Examine the motor’s wiring and connections for any signs of damage, loose connections, or poor insulation. Ensure that the wiring is properly sized and connected according to the manufacturer’s guidelines. Tighten any loose connections and repair or replace any damaged wiring or insulation.
  3. Check Motor Temperature: Monitor the motor’s temperature during operation. Excessive heat can indicate issues such as overload, insufficient cooling, or problems with the motor’s ventilation system. Make sure that the motor is adequately cooled and that any cooling fans or ventilation openings are clean and unobstructed.
  4. Inspect Bearings: Check the motor’s bearings for any signs of wear, misalignment, or damage. Excessive noise, vibration, or increased heat can be indications of bearing issues. Lubricate or replace the bearings as necessary, following the manufacturer’s recommendations.
  5. Monitor Motor Performance: Observe the motor’s performance during operation. Look for any abnormal behavior such as erratic speed, excessive noise, or sudden changes in torque. Use appropriate measuring instruments to monitor parameters such as voltage, current, and speed to identify any deviations from expected values.
  6. Check Motor Control System: Evaluate the motor control system, including the motor controller or inverter, for any faults or malfunctions. Inspect the control circuitry, sensors, and feedback mechanisms. Ensure that the control signals and commands are reaching the motor correctly and that the control system is properly programmed and calibrated.
  7. Review Motor Protection Features: Check if the motor’s protection features, such as overcurrent, overvoltage, or thermal protection, are functioning correctly. Review the motor’s documentation or consult the manufacturer’s guidelines to understand the specific protection mechanisms employed and verify their proper operation.
  8. Refer to Manufacturer Documentation: Consult the motor’s documentation, technical manuals, or troubleshooting guides provided by the manufacturer. These resources often contain specific troubleshooting steps and recommendations tailored to the particular motor model. Follow the manufacturer’s guidelines for diagnosing and resolving issues.
  9. Seek Professional Assistance: If the troubleshooting steps outlined above do not resolve the issue or if the problem is beyond your expertise, it is advisable to seek assistance from qualified professionals, such as motor technicians or engineers. They can provide specialized knowledge and diagnostic tools to identify and address complex motor issues.

Remember that troubleshooting procedures may vary depending on the specific motor model, application, and environmental conditions. It’s essential to prioritize safety precautions and adhere to proper electrical and mechanical practices when working with brushless AC motors. When in doubt, consult with experts or refer to the manufacturer’s guidelines for accurate troubleshooting and resolution of issues.

China manufacturer AC 5kw 8kw 10kw Electric Car Motor Brushless Motor   vacuum pump adapter	China manufacturer AC 5kw 8kw 10kw Electric Car Motor Brushless Motor   vacuum pump adapter
editor by CX 2024-05-15

China OEM Ye3-100L-2 3000rpm Ye3 Ye2 High Efficiency Three Phase Induction Brushless AC Motor Asynchronous Motor Induction Electric Motor 380V 50Hz 60Hz vacuum pump diy

Product Description

Why choose us ?
ELECTRIC MOTOR FEATURES  

Electric motor frame from 56 – 355, output range from 0.17HP to 430HP

Motor mounting type B3 (IM 1001), B35 (IM 2001), B5 (IM 3001), B14 (IM 3601), B34 (IM 2101)

Optional voltage 110V, 120V, 220V, 240V, 220/380V, 230V/400V, 380V/660V, 50HZ or 60HZ

Protection type IP44, IP54, IP55 on request 

Multiple mounting arrangement for optional           
Aluminum frame, end shields and base    

Strong cast iron frame
High strength cable
Shaft key and protector supplied        
Superior paint finish         
45# steel shaft and stainless steel shaft is optional
Electric motor continuous duty S1,S4
Electric motor have vacuum impregnation for insulation
Electric motor is class F insulation and class H insulation is optional
Electric motor has been make according to ISO9001, CE, UL, CCC, GS request

All of our products are make according to GOST, RoHS and IEC standard.

High performance and IE1, IE2, IE3 efficiency  

 

OUR ELECRIC MOTOR FOR CUSTOMER BENEFITS

Electricity saving and quiet operation
Electric motor can withstand water, dust and vermin
Electric motor very easy installation
Electric motor dependable Corrosion resistant and long life to work
Reliability performance and very competitive price.
 

HOW TO MAKE MOTOR ON CHINAMFG COMPANY

1. Silicon steel DR510, 800, 600, 360 standard use stamping of lamination stator and rotor die-casting

2. 100% copper winding and inserting stator (manual and semi-automatically)

3. Stator Vacuum impregnation and drying

4. CNC machining motor shaft, frame, end shields, etc

5. Professional workman inspecting spare parts every processing

6. Electric motor assembly product line

7. Electric motor will 100% test before painting.

8. Electric motor spray-paint on motor painting product line

9. Electric motor will 100% check again before packing.

An electric motor from material to finish motor, must pass 15 time check, and 100% testing, output power, voltage, electric current, non-load, 50% load, 75% load, 100% load and check the nameplate, packing. Finally shipping to our customer.

Att:Our company price was based on high height cold rolled steel stator to promise the efficiency ,if you need to cheaper ,you can choose short height stator or hot cold rolled steel stator ,thankyou

Product details 
 

YEJ Series Electromagnetic Brake Motors have features such as small volume, simple structure and strong universality. The motors have low noise, reliable braking performance and apply to operation conditions such as rapid stop, accurate positioning, reciprocate operating and sliding preventing. This series motors are continuous duty S1, and can also derive S3,S4 as per customers’ requirement. YEJ series motors can realize rapid braking when the motor lost power. The motors are widely used in machinery industries such as wind power generation yaw brake and machine tool, packing, woodworking, chemical industry, textile, construction.

(Note: The control cabinet can be custom made according to different requirements.)

YEJ Series 
Center Height of Frame  H80 – H250mm
Rated Power  0.12KW – 315KW
Supply Voltage, Frequency  380V, 50Hz (can be customized)
Protection Grade  IP44, IP54
Thermal Class  155 (F) 
Cooling  IC411

Connection 
connection method under 3KW                                                               connection method above 3KW

FAQ 

Q1: What about the shipping methods?

1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

 For heavy weight, you can choose to deliver the goods by air or by sea to save cost.

Q2: What about the payment methods?

A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.

Q3: How much does it cost to ship to my country?

A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.

Q4: What’s your delivery time?

A4: Usually we produce within 25-30days after the payment came.

Q5: Can I print our logo/code/series number on your motor?

A5: Yes, of course.

Q6: Can I order some sample for our testing?

A6: Yes, but it needs some expenses.

Q7: Can you customize my product in special requirement?

A7: Yes, we can offer OEM.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2.4.6.8.10.12
Samples:
US$ 132.31/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

In what applications are brushless AC motors commonly used?

Brushless AC motors find extensive application in various industries and sectors due to their numerous advantages. Here are some common applications where brushless AC motors are commonly used:

  • Industrial Automation: Brushless AC motors are widely employed in industrial automation systems, including conveyor belts, robotic arms, packaging machinery, and CNC machines. Their precise control, high efficiency, and reliability make them suitable for these demanding applications.
  • Electric Vehicles (EVs): Brushless AC motors are a popular choice for electric vehicles, including electric cars, motorcycles, and scooters. They offer high torque, efficient power conversion, and regenerative braking capabilities, contributing to the overall performance and range of electric vehicles.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often use brushless AC motors in fans and blowers. The motors provide energy-efficient operation, precise airflow control, and quieter performance compared to traditional brushed motors.
  • Aerospace and Aviation: Brushless AC motors are employed in various aerospace and aviation applications, such as aircraft actuators, flight control systems, and auxiliary power units. The motors offer lightweight design, high power density, and reliable operation in demanding environments.
  • Medical Equipment: Many medical devices and equipment, including surgical tools, imaging systems, and laboratory equipment, utilize brushless AC motors. The motors provide precise control, low noise, and long life, ensuring the reliability and effectiveness of medical procedures.
  • Home Appliances: Brushless AC motors are increasingly used in home appliances such as refrigerators, washing machines, and dishwashers. They offer energy-efficient operation, reduced noise, and enhanced durability compared to traditional brushed motors.
  • Renewable Energy: Brushless AC motors play a crucial role in renewable energy systems like wind turbines and solar tracking systems. Their high efficiency and precise control contribute to optimizing energy generation and harnessing renewable resources effectively.
  • Electronics and Computer Cooling: Brushless AC motors are utilized in electronics and computer cooling applications, including fans and heatsinks. The motors provide efficient heat dissipation, reliable cooling, and quiet operation to prevent overheating and ensure the optimal performance of electronic components.

These are just a few examples of the many applications where brushless AC motors are commonly used. Their versatility, efficiency, reliability, and precise control make them an ideal choice across various industries and sectors.

brushless ac motor

Are brushless AC motors more energy-efficient compared to brushed motors?

Yes, brushless AC motors are generally more energy-efficient compared to brushed motors. Several factors contribute to their improved energy efficiency. Here’s a detailed explanation:

1. Elimination of Brush Friction: Brushed motors rely on brushes and commutators for the transfer of electrical power to the rotor windings. However, the physical contact between the brushes and commutator results in friction, which leads to energy losses in the form of heat. In contrast, brushless AC motors eliminate the need for brushes and commutators, reducing friction and minimizing energy losses associated with brush wear and mechanical contact.

2. Reduced Electrical Resistance: Brushes and commutators in brushed motors introduce electrical resistance to the current flow, which results in power losses. In brushless AC motors, electronic commutation eliminates the need for physical contact and reduces electrical resistance. This reduction in resistance helps improve the overall electrical efficiency of the motor.

3. Optimal Power Conversion: Brushless AC motors use electronic controllers to precisely control the timing and duration of current flow in the stator windings. This electronic commutation allows for optimal power conversion, ensuring that electrical energy is efficiently converted into mechanical energy to drive the motor. The ability to adjust the current flow based on load requirements helps minimize unnecessary power consumption and improves overall energy efficiency.

4. Regenerative Braking: Brushless AC motors can also incorporate regenerative braking systems, which further contribute to their energy efficiency. During braking or deceleration, the motor operates in reverse as a generator, converting the kinetic energy of the rotating load into electrical energy. This regenerated energy can be fed back into the power supply or stored in a battery for later use, reducing energy waste and enhancing overall efficiency.

5. Enhanced Control and Optimization: Brushless AC motors offer finer control over motor speed, torque, and performance characteristics compared to brushed motors. The electronic commutation and advanced control algorithms enable precise adjustment of the motor’s operation to match the load requirements. This optimization ensures that the motor operates at its most efficient operating point, minimizing energy losses and maximizing energy efficiency.

Overall, the elimination of brush friction, reduced electrical resistance, optimal power conversion, regenerative braking capabilities, and enhanced control contribute to the superior energy efficiency of brushless AC motors compared to brushed motors. These energy-saving benefits make brushless AC motors an attractive choice in various applications where energy efficiency is a priority.

brushless ac motor

How do brushless AC motors contribute to the efficiency of HVAC systems?

Brushless AC motors play a significant role in improving the efficiency of HVAC (heating, ventilation, and air conditioning) systems. These motors offer several advantages over traditional motor technologies, such as brushed motors or older induction motors. Here’s a detailed explanation of how brushless AC motors contribute to the efficiency of HVAC systems:

  • Higher Energy Efficiency: Brushless AC motors are known for their higher energy efficiency compared to brushed motors or older motor technologies. They achieve this efficiency through various mechanisms:
    • Reduced Energy Losses: Brushless AC motors eliminate the need for brushes and commutators, which are sources of friction, wear, and electrical losses in brushed motors. By eliminating these components, brushless AC motors reduce energy losses and improve overall efficiency.
    • Better Motor Control: Brushless AC motors utilize advanced control techniques, such as sensor feedback and precise voltage and frequency control, to optimize motor performance. This control allows for smoother operation, improved speed regulation, and reduced energy consumption.
    • Variable Speed Operation: Brushless AC motors can operate at variable speeds, allowing them to adjust their power output to match the required load. By running the motor at the most efficient speed for a given operating condition, energy consumption is minimized, resulting in higher overall system efficiency.
  • Improved System Performance: The efficiency of an HVAC system is not solely dependent on the motor itself but also on how the motor interacts with the rest of the system. Brushless AC motors contribute to improved system performance in the following ways:
    • Enhanced Control and Integration: Brushless AC motors can be easily integrated into advanced control systems, allowing for precise regulation of motor speed, airflow, and temperature. This integration enables more efficient operation of the entire HVAC system, optimizing energy usage and improving comfort.
    • Variable Air Volume (VAV) Systems: Brushless AC motors are well-suited for VAV systems commonly used in HVAC applications. VAV systems adjust the airflow based on the cooling or heating demands of different zones. Brushless AC motors can modulate their speed and power output to match the varying airflow requirements, resulting in energy savings and improved comfort.
    • Improved Fan Efficiency: HVAC systems often rely on fans to circulate air. Brushless AC motors, with their higher energy efficiency and precise speed control, can drive fans more efficiently, reducing the energy consumed by the fan and improving overall system efficiency.
  • Longer Lifespan and Durability: Brushless AC motors are generally more reliable and durable compared to brushed motors. They have fewer moving parts, eliminating the wear and tear associated with brushes and commutators. This increased durability reduces maintenance needs and extends the lifespan of the motor, contributing to long-term efficiency gains in HVAC systems.
  • Reduced Noise and Vibration: Brushless AC motors operate with reduced noise and vibration levels compared to some other motor types. This characteristic enhances the overall comfort of HVAC systems and reduces the need for additional soundproofing measures, contributing to a more efficient and pleasant environment.

The use of brushless AC motors in HVAC systems offers substantial benefits in terms of energy efficiency, system performance, durability, and comfort. Integrating these motors into HVAC designs can lead to significant energy savings, reduced operating costs, and improved environmental sustainability.

China OEM Ye3-100L-2 3000rpm Ye3 Ye2 High Efficiency Three Phase Induction Brushless AC Motor Asynchronous Motor Induction Electric Motor 380V 50Hz 60Hz   vacuum pump diyChina OEM Ye3-100L-2 3000rpm Ye3 Ye2 High Efficiency Three Phase Induction Brushless AC Motor Asynchronous Motor Induction Electric Motor 380V 50Hz 60Hz   vacuum pump diy
editor by CX 2024-05-15

China Standard DC Gear Motor Brushless Brush DC Motor 10W 90W 200W 400W Gdm Motor Agitator Motor Fan Motor Electric Motor Small Gear Motor AC Gear Motor CH CV Motor Factory vacuum pump distributors

Product Description

DC Gear Motor
G    DM   06 55 105
Enterprise Code Motor Type Outer Diameter Cover Model  Outer Length
G – GPG DM – DC Motor 60 – 60 × 60
70 – 70 × 70
80 – 80 × 80
90 – 90 × 90
104 – 104 × 104
55 – 55mm
62 – 62mm
69 – 69mm
80 – 80mm
90 – 90mm
104 -104mm
70-70mm
75-75mm
79-79mm
86.5- 86.5mm
99.5- 99.5mm
105-105mm
118-118mm
122-122mm
118-118mm
140-140mm
165-165mm
167-167mm
175-175mm
15 P B 12 18
Power Capacity Mounting Face Motor Shaft Shape Accessories Voltage Speed
10W  15W
20W  25W
30W  35W
40W  60W
90W
120W  150W
180W  200W
250W  300W
350W  400W
R – Round Flange
S – Square Flange
P: Cylindrical Shaft
C: Gear Shaft
H – Feet Seat
B – Brake Magnetic
12 – DC 12V
24 – DC 24V
110 – DC 110V
220 – DC 220V
15 – 1500
18 – 1800
22 – 2200
32 – 3200

Model Gear Box Rated Power Voltage Amp Speed Turning Moment Shell Diameter Motor Height
W V A r/min mN.m mm 06 07
GDM06-55SP
GDM06-55SC
GDM07-55SP
GDM07-55SC
2GN
3GN
15 12 2.30 1500 95.45 Φ55 75 79
1800 79.53
2200 65.10
Optical Axis 12 2.30 3200 44.78
2GN
3GN
24 1.05 1500 95.45
1800 79.53
2200 65.10
Optical Axis 24 1.05 3200 44.78

FAQ
Q: How about your company?
A: We are a gear motor factory established in 1995 and located in HangZhou city of china. 
     We have more than 1200 workers. Our main product is AC micro gear motor 6W to 250W, 
     AC small gear motor 100W to 3700W, brush DC motor 10W to 400W, brushless motor10W to 750W,
     drum motor 60W to 3700W, planetary gearbox,and worm gearbox,etc.

Q: How about your quality control?
A: From raw material to finished products, we have strict and complete IPQC. 
     And the advanced test-ing machine can assure of qualified products delivered.

Q: How to choose a suitable motor?
A: If you have gear motor pictures or drawings to show us, 
    or you tell us detailed specs like volt-age, speed, torque, motor size, the working model of the motor, needed lifetime and noise level, etc. 
    please do not hesitate to let us know, then we can suggest a suitable motor per your request.

Q: Can you make the gear motor with customizing specifications?
A: Yes, we can customize per your request for the voltage, speed, torque, and shaft size and shape. 
     if you need additional wires or cables soldered on the terminal or need to add connectors, or capacitors, or EMC we can make it too.

Q: What’s your lead time?
A: Usually our regular standard product will need 10-15days, a bit longer for customized products. 
     But we are very flexible on the lead time, it will depend on the specific orders.

Q: What is your MOQ?
A: If delivered by sea, the minimum order is 100 pieces, if deliver by express, there is no limit.

Q: Do you have the item in stock?
A: l am sorry we do not have the item in stock, All products are made with orders.

Q: How to contact us?
A: You can send us an inquiry.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 4
Customization:
Available

|

brushless ac motor

What is the role of electronic commutation in brushless AC motors?

Electronic commutation plays a crucial role in the operation of brushless AC motors. It enables precise control over the motor’s performance, including speed, torque, and direction of rotation. Here’s a detailed explanation of the role of electronic commutation:

In a brushless AC motor, the rotor consists of permanent magnets or electromagnets, while the stator contains multiple coils of wire known as windings. The stator windings are energized with alternating current (AC) to create a rotating magnetic field. However, for the motor to rotate smoothly and maintain synchronization with the rotating magnetic field, the current flow in the stator windings must be switched at specific moments.

This is where electronic commutation comes into play. Electronic commutation involves the use of sensors, typically Hall effect sensors, placed inside the motor to detect the position of the rotor magnets. These sensors provide feedback to an electronic controller, which determines the precise timing for switching the current flow in the stator windings.

The electronic controller uses the information from the sensors to determine which windings should be energized and when. It generates signals to activate the appropriate power switches or transistors, which control the current flow in the stator windings. By switching the current flow in a carefully timed manner, the controller ensures that the magnetic force on the rotor magnets is always in the correct direction to generate continuous rotation.

Electronic commutation offers several advantages in brushless AC motors:

  • Precise Control: Electronic commutation allows for precise control over the motor’s operation. The controller can adjust the timing and duration of current switching to achieve the desired speed, torque, and direction of rotation.
  • Efficiency: By precisely controlling the current flow, electronic commutation minimizes energy losses and improves overall motor efficiency. The controller can optimize the motor’s performance to match the load requirements, reducing unnecessary power consumption.
  • Smooth Operation: Electronic commutation results in smoother motor operation compared to mechanical commutation in brushed motors. The absence of physical brushes and commutators eliminates the mechanical limitations and potential sources of friction, leading to quieter and vibration-free operation.
  • Variable Speed Control: Electronic commutation facilitates variable speed control in brushless AC motors. By adjusting the timing and frequency of current switching, the controller can vary the motor’s rotational speed over a wide range, offering flexibility in different applications.
  • Improved Reliability: Electronic commutation eliminates the wear and tear associated with brushes and commutators in traditional brushed motors. This contributes to the overall reliability and durability of brushless AC motors, reducing the need for frequent maintenance and replacement of worn-out components.

In summary, electronic commutation plays a vital role in brushless AC motors by providing precise control over the motor’s operation, improving efficiency, enabling variable speed control, ensuring smooth operation, and enhancing overall reliability. It is the key mechanism that allows brushless AC motors to deliver efficient and accurate motor performance in various applications.

brushless ac motor

What are the maintenance requirements for brushless AC motors?

Brushless AC motors are known for their relatively low maintenance requirements compared to traditional brushed motors. However, they still require some maintenance to ensure optimal performance and longevity. Here’s a detailed explanation of the maintenance requirements for brushless AC motors:

1. Cleanliness: Keeping the motor clean is essential for its proper functioning. Regularly inspect the motor for any dust, dirt, or debris accumulation. Use compressed air or a soft brush to gently remove any foreign particles that may have collected on the motor’s surface or cooling vents. Cleanliness helps prevent overheating and ensures efficient operation.

2. Ventilation: Brushless AC motors generate heat during operation, and proper ventilation is crucial for dissipating this heat. Ensure that the cooling vents or fans associated with the motor are not obstructed. Clear any obstructions that may impede the airflow around the motor. Adequate ventilation helps prevent overheating and extends the motor’s lifespan.

3. Bearing Lubrication: Brushless AC motors typically incorporate bearings to support the rotating shaft. Some motors may have sealed or maintenance-free bearings, while others may require periodic lubrication. Consult the motor manufacturer’s guidelines or specifications to determine the lubrication requirements. Proper lubrication minimizes friction and wear, ensuring smooth operation and prolonging bearing life.

4. Inspect and Tighten Connections: Periodically inspect the electrical connections of the motor, including the power cables, terminals, and control wiring. Loose or corroded connections can lead to voltage drops, excessive heat, and electrical failures. Ensure that all connections are secure and tight. If any signs of corrosion are present, clean the connections and apply an appropriate anti-corrosion treatment.

5. Check Insulation: Insulation plays a critical role in maintaining the integrity of the motor’s electrical components. Inspect the motor’s insulation regularly for any signs of damage, such as cracks, wear, or deterioration. Damaged insulation can lead to short circuits and motor failures. If any insulation issues are detected, consult a professional technician or the motor manufacturer for proper repair or replacement.

6. Monitor Vibration and Noise: Unusual vibration or excessive noise during motor operation can indicate underlying issues. Regularly monitor the motor for any abnormal vibrations or noise levels. Excessive vibration can lead to premature component failure, while unusual noise may indicate bearing wear or misalignment. If significant vibration or noise is observed, it is recommended to consult a professional technician to diagnose and address the problem.

7. Periodic Maintenance: Depending on the specific motor and its operating conditions, periodic maintenance tasks may be required, such as bearing replacement, rotor balancing, or inspection of internal components. Consult the motor manufacturer’s guidelines or recommendations for the recommended maintenance intervals and procedures specific to your motor.

It’s important to note that the specific maintenance requirements for brushless AC motors may vary depending on factors such as motor design, operating environment, and usage conditions. Consulting the motor manufacturer’s guidelines and recommendations is crucial to ensure proper maintenance practices and maximize the motor’s performance and lifespan.

brushless ac motor

What role does the inverter play in the operation of a brushless AC motor?

The inverter plays a crucial role in the operation of a brushless AC motor. It is responsible for converting the DC power from an external power source into the AC power required to drive the motor. Here’s a detailed explanation of the role of the inverter in the operation of a brushless AC motor:

The inverter serves as the interface between the power supply and the brushless AC motor. It consists of power electronic devices, such as insulated-gate bipolar transistors (IGBTs) or metal-oxide-semiconductor field-effect transistors (MOSFETs), which control the switching of electrical signals to generate the desired AC voltage and frequency for the motor.

1. Power Conversion: The primary function of the inverter is to convert the DC power from the external power source, such as a battery or power grid, into the three-phase AC power required by the brushless AC motor. The inverter achieves this conversion by rapidly switching the DC voltage on its input side to create a series of voltage pulses, which are then filtered and shaped to generate the desired AC waveform.

2. Variable Frequency Control: In addition to converting DC power to AC power, the inverter allows for precise control of the motor’s speed and torque by varying the frequency of the generated AC voltage. By adjusting the switching frequency of the inverter’s power electronic devices, the inverter can change the frequency of the AC voltage supplied to the motor. This variable frequency control enables smooth speed regulation and efficient operation of the brushless AC motor across a wide range of speeds.

3. Motor Synchronization: The inverter synchronizes its output voltage and frequency with the rotor position of the brushless AC motor. This synchronization is crucial for accurate and efficient motor operation. The inverter uses position sensors, such as Hall effect sensors or encoders, to detect the rotor position and adjust the timing of the switching signals accordingly. By maintaining proper synchronization, the inverter ensures that the magnetic fields produced by the motor’s stator windings interact optimally with the rotor’s permanent magnets, resulting in smooth and efficient motor performance.

4. Control and Protection: The inverter includes control circuitry and algorithms to manage the operation of the brushless AC motor. It receives commands or feedback signals from the motor control system or user interface and adjusts the voltage and frequency output accordingly. The inverter also incorporates various protection mechanisms to safeguard the motor and itself from abnormal conditions such as overcurrent, overvoltage, or overheating. These protection features help prevent damage to the motor and ensure safe and reliable operation.

5. Energy Regeneration: In some applications, brushless AC motors can act as generators when decelerating or during braking. The inverter can take advantage of this regenerative capability by converting the electrical energy generated by the motor back into usable power. The inverter can feed this regenerated energy back to the power supply or store it in energy storage devices, such as capacitors or batteries, for later use. This energy regeneration feature improves overall system efficiency and can be particularly beneficial in applications where frequent deceleration or braking occurs.

The inverter is an integral component of the brushless AC motor system, responsible for converting the DC power supply into the appropriate AC power to drive the motor. Its ability to control voltage, frequency, and synchronization ensures precise and efficient motor operation. Proper selection, design, and configuration of the inverter are essential to optimize the performance, reliability, and overall system efficiency of brushless AC motor applications.

China Standard DC Gear Motor Brushless Brush DC Motor 10W 90W 200W 400W Gdm Motor Agitator Motor Fan Motor Electric Motor Small Gear Motor AC Gear Motor CH CV Motor Factory   vacuum pump distributorsChina Standard DC Gear Motor Brushless Brush DC Motor 10W 90W 200W 400W Gdm Motor Agitator Motor Fan Motor Electric Motor Small Gear Motor AC Gear Motor CH CV Motor Factory   vacuum pump distributors
editor by CX 2024-05-14

China best 40-250W Brushless Gear Motor, DC Gear Motor, AC Gear Motor, Planetary Gear Motor vacuum pump distributors

Product Description

 

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless ac motor

How does the lack of brushes in brushless AC motors contribute to their longevity?

The absence of brushes in brushless AC motors significantly contributes to their longevity and overall durability. Here’s how:

1. Reduced Wear and Tear: Brushes and commutators in traditional brushed motors are prone to wear and tear due to the constant friction and mechanical contact. As the brushes make contact with the commutator, they experience abrasion and gradually wear down over time. In brushless AC motors, the lack of brushes eliminates this source of wear, resulting in reduced mechanical stress on the motor components.

2. Elimination of Brush Dust Accumulation: Brushed motors generate carbon dust as the brushes wear down. This dust can accumulate on the commutator and other motor parts, potentially causing electrical shorts, sparking, and reduced motor performance. In brushless AC motors, the absence of brushes eliminates the generation of carbon dust, reducing the risk of dust accumulation and related issues.

3. Minimized Brush Sparks: Brushes in brushed motors can produce sparks during operation, leading to electrical arcing and potential damage to the commutator and brushes themselves. These sparks can also introduce electrical noise and interfere with sensitive electronic components. Brushless AC motors, with their brushless design, eliminate the occurrence of brush sparks, resulting in smoother and quieter operation.

4. Improved Commutation: In brushed motors, the commutator is responsible for transferring electrical power to the rotor windings through the brushes. This mechanical commutation introduces limitations in terms of speed, torque, and reliability. In contrast, brushless AC motors employ electronic commutation, which is more precise and efficient. Electronic commutation eliminates the need for physical contact, allowing for greater control over the motor’s performance and reducing the potential for commutation-related issues.

5. Enhanced Electrical Efficiency: Brushes and commutators in brushed motors can cause energy losses due to friction and electrical resistance. These losses result in reduced overall motor efficiency. By eliminating brushes and commutators, brushless AC motors minimize energy losses, leading to improved electrical efficiency and reduced heat generation.

Collectively, these factors contribute to the longevity of brushless AC motors. The absence of brushes reduces mechanical wear, eliminates brush-related issues such as dust accumulation and sparks, allows for more precise electronic commutation, and improves overall electrical efficiency. As a result, brushless AC motors can operate reliably for longer periods with minimal maintenance requirements, making them a durable and long-lasting solution for various applications.

brushless ac motor

What types of sensors are typically used in brushless AC motor control systems?

In brushless AC motor control systems, several types of sensors are commonly used to provide feedback and enable precise control over motor operation. These sensors help determine the position, speed, and other parameters of the motor. Here are the typical sensors used in brushless AC motor control systems:

  • Hall Effect Sensors: Hall effect sensors are widely used in brushless AC motor control systems. These sensors detect the position of the rotor magnets by measuring changes in the magnetic field. Hall effect sensors are placed strategically around the motor, typically in the stator, to detect the magnet poles as they pass by. The information from the Hall effect sensors is used by the controller to determine the rotor position and control the timing of current switching in the stator windings.
  • Resolver: A resolver is an electromagnetic sensor that provides rotor position feedback in brushless AC motor control systems. It consists of a rotor and a stator, both containing windings. The rotor winding is excited with an AC voltage, while the stator winding is used to detect the position of the magnetic field. By measuring the phase difference between the rotor and stator windings, the resolver sensor provides accurate angular position information to the controller.
  • Encoder: Encoders are commonly used in brushless AC motor control systems to provide precise position and speed feedback. There are two main types of encoders: optical encoders and magnetic encoders. Optical encoders use a light source and a patterned disc to detect rotational position and speed. Magnetic encoders, on the other hand, utilize magnetic fields and sensors to measure position and speed. Encoders provide high-resolution feedback, enabling precise control over the motor’s operation.
  • Current Sensors: Current sensors are used to measure the current flowing through the stator windings of the brushless AC motor. They provide feedback to the controller, allowing it to monitor and control the current levels accurately. By measuring the current, the controller can adjust the timing and duration of current switching, optimizing the motor’s performance and ensuring efficient operation.
  • Temperature Sensors: Temperature sensors are often integrated into brushless AC motor control systems to monitor the motor’s temperature. They provide feedback to the controller, allowing it to implement thermal protection measures when the motor exceeds safe operating temperatures. Temperature sensors help prevent motor overheating and potential damage, ensuring the motor operates within its safe temperature limits.

These sensors play a crucial role in brushless AC motor control systems by providing the necessary feedback for precise control over the motor’s operation. They enable the controller to determine rotor position, monitor current levels, measure speed, and implement various control strategies to optimize motor performance. The integration of these sensors allows for efficient and reliable operation of brushless AC motors in a wide range of applications.

brushless ac motor

Can you explain the concept of back electromotive force (BEMF) in brushless AC motors?

Back electromotive force (BEMF) is an important concept in brushless AC motors. It refers to the voltage that is induced in the motor’s windings when the rotor rotates in the magnetic field generated by the stator. BEMF plays a crucial role in the operation and control of brushless AC motors. Here’s a detailed explanation of the concept of BEMF and its significance:

When an electric current flows through the motor’s stator windings, it creates a magnetic field that interacts with the permanent magnets or field windings on the rotor. As the rotor spins, the magnetic field lines cut across the stator windings, inducing a voltage in the windings. This induced voltage opposes the applied voltage and is referred to as the back electromotive force (BEMF).

BEMF is a consequence of Faraday’s law of electromagnetic induction, which states that a changing magnetic field induces an electromotive force in a conductor. In the case of brushless AC motors, the rotating rotor and the fixed stator create a changing magnetic field that induces a voltage in the stator windings.

The magnitude and waveform of the BEMF depend on several factors, including the speed of the motor, the number of winding turns, the strength of the magnetic field, and the design of the motor. At low speeds, the BEMF is relatively low, while at high speeds, the BEMF increases proportionally with the speed of the motor.

The BEMF in brushless AC motors serves several important purposes:

  • Motor Control: BEMF is used as feedback in motor control systems to determine the rotor position and speed. By measuring the BEMF, the motor controller can accurately synchronize the switching of the inverter to energize the stator windings at the correct time, ensuring optimal motor performance.
  • Commutation: BEMF provides information about the position of the rotor relative to the stator windings. This information is crucial for determining when to switch the current flow between different windings to generate the rotating magnetic field necessary for motor operation. By monitoring the BEMF, the motor controller can precisely control the commutation sequence, ensuring smooth and efficient motor operation.
  • Speed Regulation: BEMF is directly related to the speed of the motor. By measuring the BEMF, the motor controller can accurately determine the speed of the motor and adjust the applied voltage or frequency to maintain the desired speed. This speed regulation capability allows brushless AC motors to operate at variable speeds, providing flexibility and energy efficiency in various applications.
  • Overvoltage Protection: BEMF also plays a role in protecting the motor from overvoltage conditions. If the motor is being driven at high speed and the load suddenly decreases or the motor decelerates rapidly, the BEMF can increase significantly. The motor controller can monitor the BEMF and detect this overvoltage condition, triggering protective measures to prevent damage to the motor or other components.

In summary, back electromotive force (BEMF) is the voltage induced in the stator windings of brushless AC motors as a result of the rotor’s rotation in the magnetic field. BEMF is used for motor control, commutation, speed regulation, and overvoltage protection. Understanding and utilizing BEMF is essential for efficient and precise operation of brushless AC motors.

China best 40-250W Brushless Gear Motor, DC Gear Motor, AC Gear Motor, Planetary Gear Motor   vacuum pump distributorsChina best 40-250W Brushless Gear Motor, DC Gear Motor, AC Gear Motor, Planetary Gear Motor   vacuum pump distributors
editor by CX 2024-05-14

China Standard 180st-M10020 2000W 7.5A Brushless AC Servo Motor vacuum pump and compressor

Product Description

Brushless Servo Motor Series 180ST-M
Model 180ST-M 180ST-M 180ST-M 180ST-M 180ST-M 180ST-M 180ST-M 180ST-M
Specification Unit 10015 20015 30015 40015 1571 2571 3571 4571
Rated voltage U V 220VAC -15%-+10% 50/60Hz (300VDC)
Rated output power P out W 1500 3000 4500 6000 2000 4000 5500 7500
Rated speed n N rpm 1500 1500 1500 1500 2000 2000 2000 2000
Rated current I N A 5.5 11 16.5 22 7.5 15 22 29
Rated torque T N N.m 10 20 30 40 10 20 26.3 35.8
Peak current I P A 11 22 33 44 15 30 44 58
Peak torque T p N.m 20 40 60 80 20 40 52.6 71.6
Rotor inertia J Kg.cm 2 40 80 120 160 40 80 120 160
Encoder CPR 2500 2500 2500 2500 2500 2500 2500 2500
IP Code IP65 IP65 IP65 IP65 IP65 IP65 IP65 IP65
Winding class Class F  Continuous
Motor weight Kg 12 18 24 30 12 18 24 30
Remark Motor are available with different winding and mechanical modification to meet specific applications.

Lead-wires’ Spec To Encoder
Color BLU BLU GRN GRN YLW YLW BRN BRN GRY GRY WHT WHT RED BLK Shield
/BLK /BLK /BLK /BLK /BLK /BLK
Description A+ A- B+ B- Z+ Z- U+ U- V+ V- W+ W- Vcc GND Shield
Plug Pin# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To Motor
Color RED YLW BLU YLW/GRN
Description U V W GND
Plug Pin# 1 2 3 4

FAQ
Q: How to order?
A: send us inquiry → receive our quotation → negotiate details → confirm the sample → sign contract/deposit → mass production → cargo ready → balance/delivery → further cooperation.

Q: How about Sample order?
A: Sample is available for you. please contact us for details. 

Q: Which shipping way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Post,Sea are available.The other shipping ways are also available, please contact us if you need ship by the other shipping way. 

Q: How long is the deliver?
A: Devliver time depends on the quantity you order. usually it takes 15-25 working days.

Q: My package has missing products. What can I do?
A: Please contact our support team and we will confirm your order with the package contents.We apologize for any inconveniences. 

Q: How to confirm the payment?
A: We accept payment by T/T, PayPal, the other payment ways also could be accepted,Please contact us before you pay by the other payment ways. Also 30-50% deposit is available, the balance money should be paid before shipping. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Function: Driving
Casing Protection: Closed Type
Certification: ISO9001, CCC, SGS
Brand: Sunrise Motor
Samples:
US$ 115/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

What are the advantages of using a brushless AC motor over a brushed motor?

When comparing brushless AC motors to traditional brushed motors, several advantages arise from the brushless AC motor design. Here are the key advantages:

  1. Higher Efficiency: Brushless AC motors generally have higher efficiency compared to brushed motors. The absence of brushes and commutators reduces energy losses and minimizes friction, resulting in improved overall motor efficiency. This higher efficiency translates into reduced power consumption and lower operating costs.
  2. Longer Lifespan: Brushless AC motors typically have a longer lifespan compared to brushed motors. The elimination of brushes eliminates the wear and tear associated with brush contact and commutation, leading to less frequent maintenance and longer motor life.
  3. Reduced Maintenance: Brushed motors require regular maintenance to replace worn-out brushes and address commutator issues. In contrast, brushless AC motors have no brushes to replace or commutators to service, reducing the maintenance requirements and associated downtime.
  4. Improved Reliability: The absence of brushes in brushless AC motors eliminates common brush-related problems, such as sparking, brush dust accumulation, and brush wear. This results in improved motor reliability, reduced electrical noise, and enhanced overall system performance.
  5. Precise Control: Brushless AC motors offer precise control over speed, torque, and direction of rotation. Electronic commutation allows for accurate and efficient control of the motor’s performance, making brushless AC motors suitable for applications that require precise motion control and variable speed operation.
  6. Compact and Lightweight: Brushless AC motors are often more compact and lightweight compared to brushed motors with similar power ratings. The absence of brushes and commutators allows for a more streamlined motor design, making brushless AC motors suitable for applications where space and weight are limited.
  7. Reduced Electromagnetic Interference: Brushless AC motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless AC motors results in smoother operation and reduced electrical noise, making them suitable for applications where EMI needs to be minimized.
  8. Higher Speeds: Brushless AC motors can typically achieve higher speeds compared to brushed motors. The absence of brushes eliminates the limitations imposed by brush friction and wear, allowing brushless AC motors to operate at higher speeds without compromising motor performance.

Overall, the advantages of using brushless AC motors over brushed motors include higher efficiency, longer lifespan, reduced maintenance, improved reliability, precise control, compact design, reduced EMI, and the ability to attain higher speeds. These advantages make brushless AC motors a preferred choice in many applications, including industrial automation, robotics, electric vehicles, and more.

brushless ac motor

Can brushless AC motors be used in both industrial and residential settings?

Yes, brushless AC motors can be used in both industrial and residential settings. The versatility and advantages of brushless AC motors make them suitable for a wide range of applications. Here’s a detailed explanation:

Industrial Applications:

Brushless AC motors are widely used in various industrial applications due to their high efficiency, reliability, and precise control. Some common industrial applications where brushless AC motors are utilized include:

  • Industrial Machinery: Brushless AC motors are often used in industrial machinery such as conveyor systems, pumps, compressors, and fans. Their high torque, variable speed control, and efficient operation make them suitable for driving heavy loads and providing reliable performance in demanding industrial environments.
  • Robotics: Brushless AC motors find extensive use in robotics applications. The precise control capabilities of brushless motors, coupled with their compact size and high power density, make them ideal for powering robotic arms, grippers, and other motion control systems.
  • Automotive: Brushless AC motors are increasingly being employed in electric and hybrid vehicles. They offer high power-to-weight ratios, efficient operation, and regenerative braking capabilities, making them suitable for propulsion systems, power steering, and other automotive applications.
  • Aerospace: Brushless AC motors are used in aerospace applications, including aircraft systems, control surfaces, and landing gear mechanisms. Their reliability, compactness, and high performance make them suitable for the demanding requirements of the aerospace industry.
  • Industrial Automation: Brushless AC motors play a critical role in industrial automation systems. They are used in CNC machines, robotic arms, assembly lines, and other automated processes, providing accurate and reliable motion control.

Residential Applications:

Brushless AC motors are also finding increased use in residential settings, thanks to their energy efficiency, quiet operation, and long lifespan. Some common residential applications where brushless AC motors are utilized include:

  • Appliances: Brushless AC motors are employed in various household appliances such as refrigerators, air conditioners, washing machines, and dishwashers. They offer energy-efficient operation, precise control, and reduced noise levels, enhancing the performance and user experience of these appliances.
  • HVAC Systems: Brushless AC motors are used in heating, ventilation, and air conditioning (HVAC) systems. They provide efficient and reliable operation for fans, blowers, and pumps, contributing to energy savings and optimal indoor comfort.
  • Smart Home Devices: Brushless AC motors are integrated into smart home devices, including motorized window blinds, smart locks, and automated lighting systems. They offer quiet operation, precise positioning, and energy efficiency, enhancing the convenience and functionality of these devices.
  • Power Tools: Brushless AC motors are increasingly used in power tools such as drills, saws, and sanders. They deliver high power output, longer runtime, and longer tool life compared to brushed motors, making them desirable for DIY enthusiasts and professionals alike.

With their versatility, energy efficiency, and reliability, brushless AC motors have become a preferred choice in both industrial and residential settings. They offer numerous benefits, including improved performance, reduced maintenance requirements, and enhanced energy savings, making them suitable for a wide range of applications across various sectors.

brushless ac motor

Where can individuals find reliable information on selecting and installing brushless AC motors?

When it comes to selecting and installing brushless AC motors, individuals can find reliable information from various sources. Here are some recommended sources for obtaining accurate and valuable information on this topic:

  • Manufacturer’s Documentation: The documentation provided by motor manufacturers is a valuable resource for understanding the specifications, features, and application guidelines for specific brushless AC motors. Manufacturers often provide datasheets, technical manuals, and installation guides that offer detailed information on motor selection, installation requirements, and best practices.
  • Engineering and Motor Associations: Engineering associations and motor-specific organizations often provide resources and guidelines related to motor selection and installation. These associations may offer publications, technical papers, and online resources that cover various aspects of motor technology, including brushless AC motors. Examples of such organizations include the Institute of Electrical and Electronics Engineers (IEEE) and the National Electrical Manufacturers Association (NEMA).
  • Online Motor Portals and Databases: There are online portals and databases that specialize in providing information and resources related to electric motors. These platforms may include comprehensive motor catalogs, technical articles, motor selection tools, and user forums where individuals can ask questions and seek advice from experts in the field. Examples of such platforms include Engineering360, GlobalSpec, and the Motor Systems Tool Kit.
  • Industry Publications and Technical Journals: Industry publications and technical journals focusing on electrical engineering, motor technology, or specific industries that extensively use brushless AC motors can be excellent sources of information. These publications often feature articles, case studies, and expert insights on motor selection, installation techniques, and application-specific considerations.
  • Consulting with Motor Experts: Seeking guidance from motor experts, such as electrical engineers or motor consultants, can provide personalized advice and recommendations based on specific requirements. These professionals have in-depth knowledge and experience in motor selection and installation and can assist in evaluating the application needs, considering factors such as power requirements, environmental conditions, and system integration.

It’s important to verify the credibility and reliability of the information obtained from these sources. Checking the reputation and expertise of the source, referring to multiple reliable sources, and considering up-to-date information are essential for making informed decisions regarding the selection and installation of brushless AC motors.

Ultimately, a combination of thorough research, consultation with experts, and careful consideration of the specific application requirements will help individuals find reliable information and make well-informed decisions when it comes to selecting and installing brushless AC motors.

China Standard 180st-M10020 2000W 7.5A Brushless AC Servo Motor   vacuum pump and compressor	China Standard 180st-M10020 2000W 7.5A Brushless AC Servo Motor   vacuum pump and compressor
editor by CX 2024-05-14

China Best Sales Axial Fan Micro AC Brushless Shaded Pole Electric Motor 4820 vacuum pump distributors

Product Description

AC Shaded Pole Motor Z4820

General Specification:

Operating Temperature:-10ºC~70ºC
Motor Protection: Auto Restart or Polarity Protection
Insulation Resistance: 20MΩ or over with a DC500V Megger
Dielectric Withstand Voltage: AC500V 1s
Bearing Type: Sleeve Bearing or Ball bearing

Model No. Voltage
 (V)
Freq
 (Hz)
Speed (RPM) Current
(A)
Shaft Diameter (mm) Shaft Length (mm) Weight
(g)
Z4820 90V-240V 50/60Hz according to customer requirements 380


·All reading are typical values at rated voltage.

·Parameters can be set according to customer requirements.

More Models

Type Model Type Model
AC Shaded Pole Motor Z4815 DC Brushless Motor M25-20 
Z6110 M38-20
Z6120 M6830
Z6130  
Z8213  
Z8220  

Application
We are committed to solving cooling and ventilation problems of electronic products, household appliance, medical equipment, communication equipment and other industries.

What is our factory like?

We have got many certifications such as ISO9001, ISO14000, CE, UL, TUV, CCC, SGS, RoHS, REACH etc.

Building trust in professional services.
Thank you for your trust and we are honored to cooperate with you.We will try our best to ensure the quality of products and provide high quality service.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Single-Phase
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless ac motor

How does the lack of brushes in brushless AC motors contribute to their longevity?

The absence of brushes in brushless AC motors significantly contributes to their longevity and overall durability. Here’s how:

1. Reduced Wear and Tear: Brushes and commutators in traditional brushed motors are prone to wear and tear due to the constant friction and mechanical contact. As the brushes make contact with the commutator, they experience abrasion and gradually wear down over time. In brushless AC motors, the lack of brushes eliminates this source of wear, resulting in reduced mechanical stress on the motor components.

2. Elimination of Brush Dust Accumulation: Brushed motors generate carbon dust as the brushes wear down. This dust can accumulate on the commutator and other motor parts, potentially causing electrical shorts, sparking, and reduced motor performance. In brushless AC motors, the absence of brushes eliminates the generation of carbon dust, reducing the risk of dust accumulation and related issues.

3. Minimized Brush Sparks: Brushes in brushed motors can produce sparks during operation, leading to electrical arcing and potential damage to the commutator and brushes themselves. These sparks can also introduce electrical noise and interfere with sensitive electronic components. Brushless AC motors, with their brushless design, eliminate the occurrence of brush sparks, resulting in smoother and quieter operation.

4. Improved Commutation: In brushed motors, the commutator is responsible for transferring electrical power to the rotor windings through the brushes. This mechanical commutation introduces limitations in terms of speed, torque, and reliability. In contrast, brushless AC motors employ electronic commutation, which is more precise and efficient. Electronic commutation eliminates the need for physical contact, allowing for greater control over the motor’s performance and reducing the potential for commutation-related issues.

5. Enhanced Electrical Efficiency: Brushes and commutators in brushed motors can cause energy losses due to friction and electrical resistance. These losses result in reduced overall motor efficiency. By eliminating brushes and commutators, brushless AC motors minimize energy losses, leading to improved electrical efficiency and reduced heat generation.

Collectively, these factors contribute to the longevity of brushless AC motors. The absence of brushes reduces mechanical wear, eliminates brush-related issues such as dust accumulation and sparks, allows for more precise electronic commutation, and improves overall electrical efficiency. As a result, brushless AC motors can operate reliably for longer periods with minimal maintenance requirements, making them a durable and long-lasting solution for various applications.

brushless ac motor

How does the efficiency of a brushless AC motor compare to other motor types?

The efficiency of a motor refers to its ability to convert electrical power into mechanical power with minimal losses. Brushless AC motors are known for their high efficiency compared to other motor types. Here’s a detailed explanation of how the efficiency of brushless AC motors compares to other motor types:

1. Brushed DC Motors: Brushed DC motors, which use carbon brushes and a commutator, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed DC motors introduce friction and electrical losses, reducing overall efficiency. Additionally, the brush contact can cause sparking and wear over time, further impacting efficiency. Brushless AC motors, which eliminate the brushes and commutator, offer higher efficiency due to reduced friction and electrical losses.

2. Induction Motors: Induction motors are a type of AC motor commonly used in various applications. While induction motors are generally efficient, brushless AC motors can offer even higher efficiency. Brushless AC motors benefit from the absence of rotor windings and the elimination of energy losses associated with rotor resistance in induction motors. Additionally, brushless AC motors can achieve higher power factor and better control, further contributing to their overall efficiency.

3. Brushed AC Motors: Brushed AC motors, which use brushes and a commutator similar to brushed DC motors, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed AC motors introduce friction, wear, and electrical losses, reducing overall efficiency. Brushless AC motors eliminate these components, resulting in higher efficiency and improved performance.

4. Permanent Magnet Synchronous Motors (PMSMs): Brushless AC motors, also known as permanent magnet synchronous motors (PMSMs), are highly efficient compared to other motor types. PMSMs utilize permanent magnets on the rotor, eliminating the need for rotor windings and associated losses. The absence of brushes and commutators, as well as the use of advanced control techniques, contribute to the high efficiency of brushless AC motors. PMSMs are widely used in applications that require high efficiency, such as electric vehicles, industrial automation, and renewable energy systems.

It’s important to note that the efficiency of a motor can also depend on factors such as motor design, size, operating conditions, and control mechanisms. While brushless AC motors generally offer high efficiency, specific motor models and variations may vary in their efficiency performance. It is advisable to refer to the motor manufacturer’s specifications and efficiency data for accurate comparisons and selection of the most suitable motor for a given application.

brushless ac motor

How do brushless AC motors contribute to the efficiency of HVAC systems?

Brushless AC motors play a significant role in improving the efficiency of HVAC (heating, ventilation, and air conditioning) systems. These motors offer several advantages over traditional motor technologies, such as brushed motors or older induction motors. Here’s a detailed explanation of how brushless AC motors contribute to the efficiency of HVAC systems:

  • Higher Energy Efficiency: Brushless AC motors are known for their higher energy efficiency compared to brushed motors or older motor technologies. They achieve this efficiency through various mechanisms:
    • Reduced Energy Losses: Brushless AC motors eliminate the need for brushes and commutators, which are sources of friction, wear, and electrical losses in brushed motors. By eliminating these components, brushless AC motors reduce energy losses and improve overall efficiency.
    • Better Motor Control: Brushless AC motors utilize advanced control techniques, such as sensor feedback and precise voltage and frequency control, to optimize motor performance. This control allows for smoother operation, improved speed regulation, and reduced energy consumption.
    • Variable Speed Operation: Brushless AC motors can operate at variable speeds, allowing them to adjust their power output to match the required load. By running the motor at the most efficient speed for a given operating condition, energy consumption is minimized, resulting in higher overall system efficiency.
  • Improved System Performance: The efficiency of an HVAC system is not solely dependent on the motor itself but also on how the motor interacts with the rest of the system. Brushless AC motors contribute to improved system performance in the following ways:
    • Enhanced Control and Integration: Brushless AC motors can be easily integrated into advanced control systems, allowing for precise regulation of motor speed, airflow, and temperature. This integration enables more efficient operation of the entire HVAC system, optimizing energy usage and improving comfort.
    • Variable Air Volume (VAV) Systems: Brushless AC motors are well-suited for VAV systems commonly used in HVAC applications. VAV systems adjust the airflow based on the cooling or heating demands of different zones. Brushless AC motors can modulate their speed and power output to match the varying airflow requirements, resulting in energy savings and improved comfort.
    • Improved Fan Efficiency: HVAC systems often rely on fans to circulate air. Brushless AC motors, with their higher energy efficiency and precise speed control, can drive fans more efficiently, reducing the energy consumed by the fan and improving overall system efficiency.
  • Longer Lifespan and Durability: Brushless AC motors are generally more reliable and durable compared to brushed motors. They have fewer moving parts, eliminating the wear and tear associated with brushes and commutators. This increased durability reduces maintenance needs and extends the lifespan of the motor, contributing to long-term efficiency gains in HVAC systems.
  • Reduced Noise and Vibration: Brushless AC motors operate with reduced noise and vibration levels compared to some other motor types. This characteristic enhances the overall comfort of HVAC systems and reduces the need for additional soundproofing measures, contributing to a more efficient and pleasant environment.

The use of brushless AC motors in HVAC systems offers substantial benefits in terms of energy efficiency, system performance, durability, and comfort. Integrating these motors into HVAC designs can lead to significant energy savings, reduced operating costs, and improved environmental sustainability.

China Best Sales Axial Fan Micro AC Brushless Shaded Pole Electric Motor 4820   vacuum pump distributorsChina Best Sales Axial Fan Micro AC Brushless Shaded Pole Electric Motor 4820   vacuum pump distributors
editor by CX 2024-05-14

China Professional Micro Motor Brushless Motor BLDC Motor Electrical Motor AC Motor Electric Motor DC Motor High Speed Motor High Speed Motor Hair Dryer Motor with Controller vacuum pump electric

Product Description

Product Description

BLDC Motor is featured with electronically commutation, extremely wide speed range and an outstandingly long life span, and  mainly used in applications that low noise and low vibration is a prime requirement, such as consumer robot,coffee grinder, fan&air purifier, vacuum & blower ,etc.

In such cases, BLDC motors are for your products: Your products are designed to apply to a quiet environment. Your projects require a wider life span and higher reliability. Smaller sizes or compact designs of motors can be offered to accommodate various external product designs.
In some cases, controllability is critical, for example, a bldc motor run under closed-loop could output the exact speed as designed.

F8M110 is recommended for household appliances, such as fans and air purifiers. Please keep the following requirements in mind before requesting customization: motor size, controller, motor ratings, gearbox(if any), or other significant factors.

Parameters:

Outer Diameter 42mm AirSpeed@Rated Speed 3.96m/s Noise ≤68dB
Rated Power 134±10%W Weight 130g Application1 HairDryer
Air Volume@RatedSpeed 31.1L/s Life ≥1000hrs Application2 AirPurifier
Rated Voltage 110V/220V Controller Yes    

Drawing:

 
Characteristic of BLDC Motor:

Innovative Product Display:
 

Company Profile

Certifications

Exhibition

FAQ

Q: Can I visit your factory before we place the order?
A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical    answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please  contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other    shipping way. Please contact us if you need other shipping  way before shipment.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2-6
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

What role do electronic speed controllers (ESCs) play in brushless motor systems?

Electronic Speed Controllers (ESCs) play a crucial role in brushless motor systems as they are responsible for controlling the speed, direction, and performance of the motor. Here’s a detailed explanation of the role of electronic speed controllers in brushless motor systems:

1. Power Regulation: One of the primary functions of an ESC is to regulate the power supplied to the brushless motor. The ESC acts as an intermediary between the power source (such as a battery) and the motor, ensuring that the motor receives the appropriate voltage and current to operate at the desired speed and torque levels. The ESC monitors the input power and adjusts it based on the control signals it receives.

2. Commutation: Brushless motors require precise commutation, which involves switching the current flow in the motor windings to maintain proper magnetic field alignment and generate rotation. The ESC is responsible for coordinating the commutation process by electronically timing and sequencing the current pulses sent to the motor windings. This ensures smooth and efficient motor operation, allowing the motor to generate the desired torque and rotational speed.

3. Speed Control: ESCs enable precise speed control in brushless motor systems. By adjusting the timing and duration of the current pulses sent to the motor windings, the ESC can regulate the motor’s rotational speed. This speed control functionality is essential in various applications, such as drones, RC vehicles, robotics, and industrial automation, where precise speed adjustments are required to achieve the desired performance and functionality.

4. Direction Control: In addition to speed control, ESCs also provide direction control for brushless motors. By reversing the sequence of the current pulses sent to the motor windings, the ESC can change the direction of rotation of the motor. This allows for bi-directional operation, enabling the motor to perform tasks that require both clockwise and counterclockwise rotation.

5. Protection and Safety Features: ESCs often incorporate various protection and safety features to safeguard the motor and the overall system. These features may include overcurrent protection, overtemperature protection, low-voltage cutoff, and motor lock-up detection. By monitoring various parameters and conditions, the ESC can detect potential issues or abnormalities and take appropriate actions to prevent damage to the motor, ESC, or other components.

6. Interface and Control: ESCs provide an interface for external control and communication. They are typically equipped with input connectors to receive control signals from a receiver or a microcontroller, allowing for remote control or integration into a larger control system. Additionally, ESCs may offer advanced control features such as programmability, adjustable acceleration profiles, and compatibility with various control protocols (e.g., PWM, PPM, or CAN bus).

7. Efficiency and Performance Optimization: ESCs contribute to the overall efficiency and performance optimization of brushless motor systems. Through advanced control algorithms and power electronics, ESCs can minimize power losses, maximize energy conversion efficiency, and optimize the motor’s performance characteristics. This results in improved system efficiency, longer battery life, and enhanced motor performance.

In summary, electronic speed controllers (ESCs) play a vital role in brushless motor systems by regulating power, coordinating commutation, enabling speed and direction control, providing protection and safety features, offering control interfaces, and optimizing system efficiency and performance. The ESC acts as the central control unit that bridges the gap between the power source, the motor, and the external control system, ensuring smooth and reliable operation of brushless motors across a wide range of applications.

brushless motor

How does the control system of a brushless motor contribute to precise speed regulation?

The control system of a brushless motor plays a crucial role in achieving precise speed regulation, allowing for accurate and stable motor operation. By utilizing advanced control algorithms and feedback mechanisms, the control system effectively manages the power delivery and motor performance, resulting in precise speed control. Here’s a detailed explanation of how the control system of a brushless motor contributes to precise speed regulation:

  • Electronic Commutation: Brushless motors employ electronic commutation, which replaces traditional brushes and commutators with solid-state electronic components. The control system utilizes sensors, such as Hall effect sensors or encoders, to accurately detect the rotor position. By knowing the precise rotor position, the control system can switch the power supply to the motor windings at the optimal timing, ensuring smooth rotation and precise speed control.
  • Pulse Width Modulation (PWM): The control system utilizes pulse width modulation to regulate the power delivered to the motor windings. By adjusting the width of the electrical pulses, the control system can control the average voltage applied to the motor, thereby regulating the motor speed. Precise timing and modulation of the PWM signals allow for fine-grained control over the motor speed, enabling precise speed regulation with minimal speed fluctuations.
  • Feedback Control: The control system incorporates feedback control mechanisms to monitor and regulate the motor speed. Feedback is typically obtained from position sensors, such as encoders or Hall effect sensors, which provide real-time information about the rotor position. This feedback is compared to the desired speed reference, and any deviations are used to adjust the motor control signals. By continuously comparing the actual speed with the desired speed, the control system makes corrective adjustments to maintain precise speed regulation.
  • Proportional-Integral-Derivative (PID) Control: Many brushless motor control systems employ PID control algorithms to achieve precise speed regulation. PID control utilizes a combination of proportional, integral, and derivative control actions to minimize speed errors and maintain stable operation. The proportional control component responds to the current speed error, the integral control component integrates past speed errors to eliminate steady-state errors, and the derivative control component anticipates speed changes to improve response time. The PID control algorithm continuously adjusts the motor control signals based on the speed error, contributing to precise speed regulation.
  • Closed-Loop Control: The control system of a brushless motor typically operates in a closed-loop configuration, where the feedback from position sensors is used to regulate the motor speed. Closed-loop control ensures that the motor speed accurately follows the desired reference speed, even in the presence of external disturbances or varying load conditions. By continuously comparing the actual speed with the desired speed and making real-time adjustments, closed-loop control provides precise speed regulation and improves the motor’s ability to maintain a constant speed under changing operating conditions.
  • Advanced Control Techniques: The control system may incorporate advanced control techniques, such as field-oriented control (FOC) or vector control, to achieve even higher precision in speed regulation. These techniques involve transforming the motor currents and voltages into a rotating reference frame, allowing for independent control of the magnetizing and torque-producing components. By decoupling these components and controlling them separately, advanced control techniques enable precise control of the motor speed and improve overall performance.

In summary, the control system of a brushless motor contributes to precise speed regulation through electronic commutation, pulse width modulation, feedback control, PID control algorithms, closed-loop control, and advanced control techniques. By utilizing these control strategies, the control system ensures accurate and stable motor operation, allowing for precise speed control and minimizing speed deviations in various applications.

brushless motor

How do brushless motors contribute to energy efficiency compared to brushed motors?

Brushless motors offer several key advantages over brushed motors when it comes to energy efficiency. Here’s how brushless motors contribute to energy efficiency compared to brushed motors:

1. Elimination of Brush Friction:

In brushed motors, the brushes make physical contact with the commutator, resulting in friction and wear. This friction causes energy losses in the form of heat. Brushless motors, on the other hand, do not use brushes or commutators. The absence of brush friction significantly reduces energy losses, resulting in improved energy efficiency. The elimination of brush friction allows brushless motors to operate at higher efficiencies and reduces the amount of wasted energy dissipated as heat.

2. Reduced Electrical Resistance:

Brushed motors rely on the brushes and commutator to transfer electrical current to the rotor windings. However, these components introduce electrical resistance, leading to energy losses in the form of voltage drops and heat generation. In brushless motors, electrical current is transferred to the stator windings through electronic commutation, which eliminates the resistance caused by brushes and commutators. The reduced electrical resistance in brushless motors results in higher energy efficiency and minimizes power losses.

3. Improved Power Conversion:

Brushless motors employ electronic commutation, allowing for more precise control of the current flow in the stator windings. This precise control enables optimized power conversion, ensuring that the electrical energy supplied to the motor is efficiently converted into mechanical power. Brushed motors, on the other hand, rely on mechanical commutation, which is less efficient and leads to power losses in the form of sparks and arcing. The improved power conversion in brushless motors contributes to their higher energy efficiency.

4. Regenerative Braking:

Brushless motors have the capability of regenerative braking, which further enhances their energy efficiency. During braking or deceleration, the motor can act as a generator, converting the kinetic energy of the moving load back into electrical energy. This regenerated energy can be fed back into the power source or stored in batteries or capacitors for later use. Regenerative braking reduces energy wastage and improves overall system efficiency by recovering and reusing energy that would otherwise be dissipated as heat in traditional braking systems.

5. Optimal Sizing and Control:

Brushless motors can be designed and controlled to match the specific requirements of the application, resulting in optimal sizing and operation. By selecting the appropriate motor size, torque rating, and control parameters, the motor can operate at its most efficient operating point. This tailored approach ensures that the motor operates with minimal energy losses and maximizes its energy efficiency. In contrast, brushed motors may be oversized or underutilized for certain applications, leading to less efficient operation and higher energy consumption.

Overall, brushless motors offer higher energy efficiency compared to brushed motors due to the elimination of brush friction, reduced electrical resistance, improved power conversion, regenerative braking capabilities, and the ability to optimize motor sizing and control. These energy-saving features make brushless motors a preferred choice in various applications, particularly those that prioritize energy efficiency, such as electric vehicles, renewable energy systems, and battery-powered devices.

China Professional Micro Motor Brushless Motor BLDC Motor Electrical Motor AC Motor Electric Motor DC Motor High Speed Motor High Speed Motor Hair Dryer Motor with Controller   vacuum pump electricChina Professional Micro Motor Brushless Motor BLDC Motor Electrical Motor AC Motor Electric Motor DC Motor High Speed Motor High Speed Motor Hair Dryer Motor with Controller   vacuum pump electric
editor by CX 2024-05-13

China wholesaler Micro Motor Brushless Motor BLDC Motor Electrical Motor AC Motor Electric Motor DC Motor High Speed Motor High Speed Motor Hair Dryer Motor with Controller vacuum pump oil

Product Description

Product Description

BLDC Motor is featured with electronically commutation, extremely wide speed range and an outstandingly long life span, and  mainly used in applications that low noise and low vibration is a prime requirement, such as consumer robot,coffee grinder, fan&air purifier, vacuum & blower ,etc.

In such cases, BLDC motors are for your products: Your products are designed to apply to a quiet environment. Your projects require a wider life span and higher reliability. Smaller sizes or compact designs of motors can be offered to accommodate various external product designs.
In some cases, controllability is critical, for example, a bldc motor run under closed-loop could output the exact speed as designed.

F8M110 is recommended for household appliances, such as fans and air purifiers. Please keep the following requirements in mind before requesting customization: motor size, controller, motor ratings, gearbox(if any), or other significant factors.

Parameters:

Outer Diameter 42mm AirSpeed@Rated Speed 3.96m/s Noise ≤68dB
Rated Power 134±10%W Weight 130g Application1 HairDryer
Air Volume@RatedSpeed 31.1L/s Life ≥1000hrs Application2 AirPurifier
Rated Voltage 110V/220V Controller Yes    

Drawing:

 
Characteristic of BLDC Motor:

Innovative Product Display:
 

Company Profile

Certifications

Exhibition

FAQ

Q: Can I visit your factory before we place the order?
A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical    answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please  contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other    shipping way. Please contact us if you need other shipping  way before shipment.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2-6
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

What factors should be considered when selecting a brushless motor for a specific application?

When selecting a brushless motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here are the key factors to take into account:

1. Power and Torque Requirements:

Determine the power and torque requirements of the application. This includes considering the desired operating speed, acceleration, and load characteristics. Select a brushless motor that can deliver the required power and torque output within the application’s operating range. Consider factors such as the motor’s power rating, torque density, and speed-torque characteristics.

2. Size and Form Factor:

Evaluate the space available for motor installation. Consider the physical dimensions and form factor of the motor to ensure it can fit within the application’s constraints. Additionally, consider the weight of the motor, especially in applications where weight is a critical factor, such as drones or portable devices.

3. Environmental Conditions:

Assess the environmental conditions in which the motor will operate. Consider factors such as temperature extremes, humidity, dust, and vibration levels. Choose a brushless motor that is designed to withstand and perform reliably in the specific environmental conditions of the application. Look for motors with appropriate protection ratings (e.g., IP ratings) and robust construction.

4. Efficiency and Energy Consumption:

Consider the desired energy efficiency of the application. Select a brushless motor with high efficiency to minimize energy consumption and maximize overall system efficiency. Efficiency can be influenced by factors such as motor design, winding configuration, and the use of advanced control techniques. Look for motors with high efficiency ratings or specific certifications, such as IE (International Efficiency) classifications.

5. Control and Feedback Requirements:

Evaluate the control and feedback requirements of the application. Determine if sensorless control or position feedback through sensors (e.g., encoders) is necessary for precise speed or position control. Consider the compatibility of the motor’s control interfaces and communication protocols with the application’s control system. Some applications may require motors with built-in control electronics or compatibility with specific motor controllers.

6. Operating Voltage and Power Supply:

Determine the available power supply and the operating voltage range of the application. Select a brushless motor that operates within the available voltage range and is compatible with the power supply infrastructure. Consider factors such as voltage ratings, current requirements, and the availability of appropriate power supply units or motor drives.

7. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the application. Consider factors such as the motor’s rated lifetime, bearing type, insulation class, and overall build quality. Look for motors from reputable manufacturers with a track record of producing reliable and durable products. Consider the availability of maintenance and support services.

8. Cost and Budget:

Consider the cost and budget limitations of the application. Balance the desired motor performance and features with the available budget. Compare the costs of different motor options, taking into account factors such as initial purchase cost, maintenance requirements, and potential energy savings over the motor’s lifetime.

9. Application-Specific Considerations:

Take into account any application-specific requirements or constraints. This may include factors such as regulatory compliance, specific certifications (e.g., safety or industry-specific certifications), compatibility with other system components, and any unique operational or functional requirements of the application.

By carefully considering these factors, you can select a brushless motor that is well-suited for the specific application, ensuring optimal performance, efficiency, reliability, and compatibility.

brushless motor

How does the control system of a brushless motor contribute to precise speed regulation?

The control system of a brushless motor plays a crucial role in achieving precise speed regulation, allowing for accurate and stable motor operation. By utilizing advanced control algorithms and feedback mechanisms, the control system effectively manages the power delivery and motor performance, resulting in precise speed control. Here’s a detailed explanation of how the control system of a brushless motor contributes to precise speed regulation:

  • Electronic Commutation: Brushless motors employ electronic commutation, which replaces traditional brushes and commutators with solid-state electronic components. The control system utilizes sensors, such as Hall effect sensors or encoders, to accurately detect the rotor position. By knowing the precise rotor position, the control system can switch the power supply to the motor windings at the optimal timing, ensuring smooth rotation and precise speed control.
  • Pulse Width Modulation (PWM): The control system utilizes pulse width modulation to regulate the power delivered to the motor windings. By adjusting the width of the electrical pulses, the control system can control the average voltage applied to the motor, thereby regulating the motor speed. Precise timing and modulation of the PWM signals allow for fine-grained control over the motor speed, enabling precise speed regulation with minimal speed fluctuations.
  • Feedback Control: The control system incorporates feedback control mechanisms to monitor and regulate the motor speed. Feedback is typically obtained from position sensors, such as encoders or Hall effect sensors, which provide real-time information about the rotor position. This feedback is compared to the desired speed reference, and any deviations are used to adjust the motor control signals. By continuously comparing the actual speed with the desired speed, the control system makes corrective adjustments to maintain precise speed regulation.
  • Proportional-Integral-Derivative (PID) Control: Many brushless motor control systems employ PID control algorithms to achieve precise speed regulation. PID control utilizes a combination of proportional, integral, and derivative control actions to minimize speed errors and maintain stable operation. The proportional control component responds to the current speed error, the integral control component integrates past speed errors to eliminate steady-state errors, and the derivative control component anticipates speed changes to improve response time. The PID control algorithm continuously adjusts the motor control signals based on the speed error, contributing to precise speed regulation.
  • Closed-Loop Control: The control system of a brushless motor typically operates in a closed-loop configuration, where the feedback from position sensors is used to regulate the motor speed. Closed-loop control ensures that the motor speed accurately follows the desired reference speed, even in the presence of external disturbances or varying load conditions. By continuously comparing the actual speed with the desired speed and making real-time adjustments, closed-loop control provides precise speed regulation and improves the motor’s ability to maintain a constant speed under changing operating conditions.
  • Advanced Control Techniques: The control system may incorporate advanced control techniques, such as field-oriented control (FOC) or vector control, to achieve even higher precision in speed regulation. These techniques involve transforming the motor currents and voltages into a rotating reference frame, allowing for independent control of the magnetizing and torque-producing components. By decoupling these components and controlling them separately, advanced control techniques enable precise control of the motor speed and improve overall performance.

In summary, the control system of a brushless motor contributes to precise speed regulation through electronic commutation, pulse width modulation, feedback control, PID control algorithms, closed-loop control, and advanced control techniques. By utilizing these control strategies, the control system ensures accurate and stable motor operation, allowing for precise speed control and minimizing speed deviations in various applications.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China wholesaler Micro Motor Brushless Motor BLDC Motor Electrical Motor AC Motor Electric Motor DC Motor High Speed Motor High Speed Motor Hair Dryer Motor with Controller   vacuum pump oil	China wholesaler Micro Motor Brushless Motor BLDC Motor Electrical Motor AC Motor Electric Motor DC Motor High Speed Motor High Speed Motor Hair Dryer Motor with Controller   vacuum pump oil
editor by CX 2024-05-10