Tag Archives: home machine

China Professional High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine vacuum pump distributors

Product Description

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless ac motor

What are the advantages of using a brushless AC motor over a brushed motor?

When comparing brushless AC motors to traditional brushed motors, several advantages arise from the brushless AC motor design. Here are the key advantages:

  1. Higher Efficiency: Brushless AC motors generally have higher efficiency compared to brushed motors. The absence of brushes and commutators reduces energy losses and minimizes friction, resulting in improved overall motor efficiency. This higher efficiency translates into reduced power consumption and lower operating costs.
  2. Longer Lifespan: Brushless AC motors typically have a longer lifespan compared to brushed motors. The elimination of brushes eliminates the wear and tear associated with brush contact and commutation, leading to less frequent maintenance and longer motor life.
  3. Reduced Maintenance: Brushed motors require regular maintenance to replace worn-out brushes and address commutator issues. In contrast, brushless AC motors have no brushes to replace or commutators to service, reducing the maintenance requirements and associated downtime.
  4. Improved Reliability: The absence of brushes in brushless AC motors eliminates common brush-related problems, such as sparking, brush dust accumulation, and brush wear. This results in improved motor reliability, reduced electrical noise, and enhanced overall system performance.
  5. Precise Control: Brushless AC motors offer precise control over speed, torque, and direction of rotation. Electronic commutation allows for accurate and efficient control of the motor’s performance, making brushless AC motors suitable for applications that require precise motion control and variable speed operation.
  6. Compact and Lightweight: Brushless AC motors are often more compact and lightweight compared to brushed motors with similar power ratings. The absence of brushes and commutators allows for a more streamlined motor design, making brushless AC motors suitable for applications where space and weight are limited.
  7. Reduced Electromagnetic Interference: Brushless AC motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless AC motors results in smoother operation and reduced electrical noise, making them suitable for applications where EMI needs to be minimized.
  8. Higher Speeds: Brushless AC motors can typically achieve higher speeds compared to brushed motors. The absence of brushes eliminates the limitations imposed by brush friction and wear, allowing brushless AC motors to operate at higher speeds without compromising motor performance.

Overall, the advantages of using brushless AC motors over brushed motors include higher efficiency, longer lifespan, reduced maintenance, improved reliability, precise control, compact design, reduced EMI, and the ability to attain higher speeds. These advantages make brushless AC motors a preferred choice in many applications, including industrial automation, robotics, electric vehicles, and more.

brushless ac motor

How does the speed control mechanism work in a brushless AC motor?

In a brushless AC motor, the speed control mechanism relies on precise control of the motor’s electrical power input. By adjusting the frequency and voltage of the AC power supplied to the motor, the speed of the motor can be controlled. Here’s a detailed explanation of how the speed control mechanism works:

1. Electronic Commutation: Brushless AC motors use electronic commutation to control the timing and duration of current flow in the stator windings. The commutation process determines which winding is energized and in what sequence, creating a rotating magnetic field that interacts with the rotor magnets. By controlling the electronic commutation, the speed of the motor can be regulated.

2. Pulse Width Modulation (PWM): Pulse width modulation is commonly used to control the voltage supplied to the motor. In PWM control, the voltage is rapidly switched on and off at a fixed frequency. By varying the width (duration) of the on-time or off-time periods, the effective voltage applied to the motor can be adjusted. This modulation technique allows for precise control of the motor’s speed.

3. Speed Feedback: To maintain the desired speed, brushless AC motor control systems often incorporate speed feedback mechanisms. These mechanisms typically use encoders, tachometers, or other speed sensors to measure the actual speed of the motor. The feedback signal is compared to the desired speed setpoint, and the control system adjusts the power supplied to the motor accordingly to maintain the desired speed.

4. Control Algorithms: Control algorithms are used to process the speed feedback signal and generate control signals for the motor. These algorithms can be implemented in dedicated motor control chips or in software running on microcontrollers. The control algorithms take into account the speed error (difference between the desired speed and actual speed) and adjust the power input to the motor to minimize the error and maintain a stable speed.

5. Variable Frequency Drive (VFD): In many applications, brushless AC motors are driven by variable frequency drives (VFDs). VFDs convert the incoming AC power into DC power and then generate AC power with variable frequency and voltage. By adjusting the frequency and voltage output of the VFD, the speed of the motor can be controlled. VFDs often incorporate advanced control algorithms and feedback mechanisms to achieve precise speed control.

6. Load and Torque Considerations: It’s important to consider the load and torque requirements when controlling the speed of a brushless AC motor. The control system should be designed to handle changes in load and adjust the power input accordingly to maintain the desired speed. Additionally, some control systems may incorporate torque control mechanisms to regulate the motor’s torque output along with speed control.

By utilizing electronic commutation, pulse width modulation, speed feedback, control algorithms, and variable frequency drives, brushless AC motors can achieve accurate and dynamic speed control. This speed control mechanism allows the motor to adapt to different operating conditions and meet the specific speed requirements of various applications.

brushless ac motor

How do brushless AC motors contribute to the efficiency of HVAC systems?

Brushless AC motors play a significant role in improving the efficiency of HVAC (heating, ventilation, and air conditioning) systems. These motors offer several advantages over traditional motor technologies, such as brushed motors or older induction motors. Here’s a detailed explanation of how brushless AC motors contribute to the efficiency of HVAC systems:

  • Higher Energy Efficiency: Brushless AC motors are known for their higher energy efficiency compared to brushed motors or older motor technologies. They achieve this efficiency through various mechanisms:
    • Reduced Energy Losses: Brushless AC motors eliminate the need for brushes and commutators, which are sources of friction, wear, and electrical losses in brushed motors. By eliminating these components, brushless AC motors reduce energy losses and improve overall efficiency.
    • Better Motor Control: Brushless AC motors utilize advanced control techniques, such as sensor feedback and precise voltage and frequency control, to optimize motor performance. This control allows for smoother operation, improved speed regulation, and reduced energy consumption.
    • Variable Speed Operation: Brushless AC motors can operate at variable speeds, allowing them to adjust their power output to match the required load. By running the motor at the most efficient speed for a given operating condition, energy consumption is minimized, resulting in higher overall system efficiency.
  • Improved System Performance: The efficiency of an HVAC system is not solely dependent on the motor itself but also on how the motor interacts with the rest of the system. Brushless AC motors contribute to improved system performance in the following ways:
    • Enhanced Control and Integration: Brushless AC motors can be easily integrated into advanced control systems, allowing for precise regulation of motor speed, airflow, and temperature. This integration enables more efficient operation of the entire HVAC system, optimizing energy usage and improving comfort.
    • Variable Air Volume (VAV) Systems: Brushless AC motors are well-suited for VAV systems commonly used in HVAC applications. VAV systems adjust the airflow based on the cooling or heating demands of different zones. Brushless AC motors can modulate their speed and power output to match the varying airflow requirements, resulting in energy savings and improved comfort.
    • Improved Fan Efficiency: HVAC systems often rely on fans to circulate air. Brushless AC motors, with their higher energy efficiency and precise speed control, can drive fans more efficiently, reducing the energy consumed by the fan and improving overall system efficiency.
  • Longer Lifespan and Durability: Brushless AC motors are generally more reliable and durable compared to brushed motors. They have fewer moving parts, eliminating the wear and tear associated with brushes and commutators. This increased durability reduces maintenance needs and extends the lifespan of the motor, contributing to long-term efficiency gains in HVAC systems.
  • Reduced Noise and Vibration: Brushless AC motors operate with reduced noise and vibration levels compared to some other motor types. This characteristic enhances the overall comfort of HVAC systems and reduces the need for additional soundproofing measures, contributing to a more efficient and pleasant environment.

The use of brushless AC motors in HVAC systems offers substantial benefits in terms of energy efficiency, system performance, durability, and comfort. Integrating these motors into HVAC designs can lead to significant energy savings, reduced operating costs, and improved environmental sustainability.

China Professional High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine   vacuum pump distributorsChina Professional High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine   vacuum pump distributors
editor by CX 2024-05-09

China Hot selling High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine vacuum pump belt

Product Description

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless ac motor

What is a brushless AC motor, and how does it differ from traditional brushed motors?

A brushless AC motor, also known as a brushless alternating current motor, is a type of electric motor that operates without the use of brushes and commutators found in traditional brushed motors. Instead of using brushes to transfer electrical power to the rotor, brushless AC motors utilize electronic commutation to control the motor’s operation.

The main differences between brushless AC motors and traditional brushed motors are as follows:

  1. Brushes and commutators: In traditional brushed motors, the rotor contains brushes that come into contact with a commutator, which transfers electrical power to the rotor windings. The brushes and commutators introduce friction and wear, requiring regular maintenance and replacement. In contrast, brushless AC motors eliminate the need for brushes and commutators, resulting in reduced friction, lower maintenance requirements, and increased motor lifespan.
  2. Electronic commutation: Brushless AC motors employ electronic commutation through the use of sensors and an electronic controller. The controller monitors the rotor position and switches the current in the motor windings at precise moments to generate the desired rotating magnetic field. This electronic commutation allows for more precise control of the motor’s speed, torque, and direction of rotation.
  3. Efficiency and performance: Brushless AC motors generally offer higher efficiency compared to traditional brushed motors. The elimination of brushes and commutators reduces energy losses, resulting in improved overall motor efficiency. Additionally, brushless AC motors can provide smoother and quieter operation due to their electronic commutation and precise control of the motor’s performance.
  4. Size and weight: Brushless AC motors are often more compact and lightweight compared to traditional brushed motors with similar power ratings. The absence of brushes and commutators allows for a more streamlined motor design, making brushless AC motors suitable for applications with limited space or weight restrictions.
  5. Reliability and lifespan: Brushless AC motors tend to have a longer lifespan and higher reliability due to the absence of brushes that can wear out over time. The elimination of brush-related issues, such as brush sparking and brush dust accumulation, contributes to the improved reliability and durability of brushless AC motors.

Brushless AC motors are widely used in various applications, including industrial automation, robotics, electric vehicles, HVAC systems, and more. Their superior efficiency, precise control, reduced maintenance requirements, and longer lifespan make them a preferred choice in many modern motor-driven systems.

brushless ac motor

How does the speed control mechanism work in a brushless AC motor?

In a brushless AC motor, the speed control mechanism relies on precise control of the motor’s electrical power input. By adjusting the frequency and voltage of the AC power supplied to the motor, the speed of the motor can be controlled. Here’s a detailed explanation of how the speed control mechanism works:

1. Electronic Commutation: Brushless AC motors use electronic commutation to control the timing and duration of current flow in the stator windings. The commutation process determines which winding is energized and in what sequence, creating a rotating magnetic field that interacts with the rotor magnets. By controlling the electronic commutation, the speed of the motor can be regulated.

2. Pulse Width Modulation (PWM): Pulse width modulation is commonly used to control the voltage supplied to the motor. In PWM control, the voltage is rapidly switched on and off at a fixed frequency. By varying the width (duration) of the on-time or off-time periods, the effective voltage applied to the motor can be adjusted. This modulation technique allows for precise control of the motor’s speed.

3. Speed Feedback: To maintain the desired speed, brushless AC motor control systems often incorporate speed feedback mechanisms. These mechanisms typically use encoders, tachometers, or other speed sensors to measure the actual speed of the motor. The feedback signal is compared to the desired speed setpoint, and the control system adjusts the power supplied to the motor accordingly to maintain the desired speed.

4. Control Algorithms: Control algorithms are used to process the speed feedback signal and generate control signals for the motor. These algorithms can be implemented in dedicated motor control chips or in software running on microcontrollers. The control algorithms take into account the speed error (difference between the desired speed and actual speed) and adjust the power input to the motor to minimize the error and maintain a stable speed.

5. Variable Frequency Drive (VFD): In many applications, brushless AC motors are driven by variable frequency drives (VFDs). VFDs convert the incoming AC power into DC power and then generate AC power with variable frequency and voltage. By adjusting the frequency and voltage output of the VFD, the speed of the motor can be controlled. VFDs often incorporate advanced control algorithms and feedback mechanisms to achieve precise speed control.

6. Load and Torque Considerations: It’s important to consider the load and torque requirements when controlling the speed of a brushless AC motor. The control system should be designed to handle changes in load and adjust the power input accordingly to maintain the desired speed. Additionally, some control systems may incorporate torque control mechanisms to regulate the motor’s torque output along with speed control.

By utilizing electronic commutation, pulse width modulation, speed feedback, control algorithms, and variable frequency drives, brushless AC motors can achieve accurate and dynamic speed control. This speed control mechanism allows the motor to adapt to different operating conditions and meet the specific speed requirements of various applications.

brushless ac motor

How do you troubleshoot common issues with brushless AC motors?

When troubleshooting common issues with brushless AC motors, it’s important to systematically identify and address potential problems. Here’s a detailed explanation of the steps involved in troubleshooting common issues with brushless AC motors:

  1. Check Power Supply: Verify that the power supply to the motor is functioning correctly. Ensure that the voltage and frequency supplied to the motor match the specifications provided by the manufacturer. Check for any loose connections, blown fuses, or tripped circuit breakers that may be interrupting the power supply.
  2. Inspect Wiring and Connections: Examine the motor’s wiring and connections for any signs of damage, loose connections, or poor insulation. Ensure that the wiring is properly sized and connected according to the manufacturer’s guidelines. Tighten any loose connections and repair or replace any damaged wiring or insulation.
  3. Check Motor Temperature: Monitor the motor’s temperature during operation. Excessive heat can indicate issues such as overload, insufficient cooling, or problems with the motor’s ventilation system. Make sure that the motor is adequately cooled and that any cooling fans or ventilation openings are clean and unobstructed.
  4. Inspect Bearings: Check the motor’s bearings for any signs of wear, misalignment, or damage. Excessive noise, vibration, or increased heat can be indications of bearing issues. Lubricate or replace the bearings as necessary, following the manufacturer’s recommendations.
  5. Monitor Motor Performance: Observe the motor’s performance during operation. Look for any abnormal behavior such as erratic speed, excessive noise, or sudden changes in torque. Use appropriate measuring instruments to monitor parameters such as voltage, current, and speed to identify any deviations from expected values.
  6. Check Motor Control System: Evaluate the motor control system, including the motor controller or inverter, for any faults or malfunctions. Inspect the control circuitry, sensors, and feedback mechanisms. Ensure that the control signals and commands are reaching the motor correctly and that the control system is properly programmed and calibrated.
  7. Review Motor Protection Features: Check if the motor’s protection features, such as overcurrent, overvoltage, or thermal protection, are functioning correctly. Review the motor’s documentation or consult the manufacturer’s guidelines to understand the specific protection mechanisms employed and verify their proper operation.
  8. Refer to Manufacturer Documentation: Consult the motor’s documentation, technical manuals, or troubleshooting guides provided by the manufacturer. These resources often contain specific troubleshooting steps and recommendations tailored to the particular motor model. Follow the manufacturer’s guidelines for diagnosing and resolving issues.
  9. Seek Professional Assistance: If the troubleshooting steps outlined above do not resolve the issue or if the problem is beyond your expertise, it is advisable to seek assistance from qualified professionals, such as motor technicians or engineers. They can provide specialized knowledge and diagnostic tools to identify and address complex motor issues.

Remember that troubleshooting procedures may vary depending on the specific motor model, application, and environmental conditions. It’s essential to prioritize safety precautions and adhere to proper electrical and mechanical practices when working with brushless AC motors. When in doubt, consult with experts or refer to the manufacturer’s guidelines for accurate troubleshooting and resolution of issues.

China Hot selling High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine   vacuum pump belt	China Hot selling High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine   vacuum pump belt
editor by CX 2024-05-09

China high quality High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine vacuum pump brakes

Product Description

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless ac motor

What is the role of electronic commutation in brushless AC motors?

Electronic commutation plays a crucial role in the operation of brushless AC motors. It enables precise control over the motor’s performance, including speed, torque, and direction of rotation. Here’s a detailed explanation of the role of electronic commutation:

In a brushless AC motor, the rotor consists of permanent magnets or electromagnets, while the stator contains multiple coils of wire known as windings. The stator windings are energized with alternating current (AC) to create a rotating magnetic field. However, for the motor to rotate smoothly and maintain synchronization with the rotating magnetic field, the current flow in the stator windings must be switched at specific moments.

This is where electronic commutation comes into play. Electronic commutation involves the use of sensors, typically Hall effect sensors, placed inside the motor to detect the position of the rotor magnets. These sensors provide feedback to an electronic controller, which determines the precise timing for switching the current flow in the stator windings.

The electronic controller uses the information from the sensors to determine which windings should be energized and when. It generates signals to activate the appropriate power switches or transistors, which control the current flow in the stator windings. By switching the current flow in a carefully timed manner, the controller ensures that the magnetic force on the rotor magnets is always in the correct direction to generate continuous rotation.

Electronic commutation offers several advantages in brushless AC motors:

  • Precise Control: Electronic commutation allows for precise control over the motor’s operation. The controller can adjust the timing and duration of current switching to achieve the desired speed, torque, and direction of rotation.
  • Efficiency: By precisely controlling the current flow, electronic commutation minimizes energy losses and improves overall motor efficiency. The controller can optimize the motor’s performance to match the load requirements, reducing unnecessary power consumption.
  • Smooth Operation: Electronic commutation results in smoother motor operation compared to mechanical commutation in brushed motors. The absence of physical brushes and commutators eliminates the mechanical limitations and potential sources of friction, leading to quieter and vibration-free operation.
  • Variable Speed Control: Electronic commutation facilitates variable speed control in brushless AC motors. By adjusting the timing and frequency of current switching, the controller can vary the motor’s rotational speed over a wide range, offering flexibility in different applications.
  • Improved Reliability: Electronic commutation eliminates the wear and tear associated with brushes and commutators in traditional brushed motors. This contributes to the overall reliability and durability of brushless AC motors, reducing the need for frequent maintenance and replacement of worn-out components.

In summary, electronic commutation plays a vital role in brushless AC motors by providing precise control over the motor’s operation, improving efficiency, enabling variable speed control, ensuring smooth operation, and enhancing overall reliability. It is the key mechanism that allows brushless AC motors to deliver efficient and accurate motor performance in various applications.

brushless ac motor

Can brushless AC motors be used in both industrial and residential settings?

Yes, brushless AC motors can be used in both industrial and residential settings. The versatility and advantages of brushless AC motors make them suitable for a wide range of applications. Here’s a detailed explanation:

Industrial Applications:

Brushless AC motors are widely used in various industrial applications due to their high efficiency, reliability, and precise control. Some common industrial applications where brushless AC motors are utilized include:

  • Industrial Machinery: Brushless AC motors are often used in industrial machinery such as conveyor systems, pumps, compressors, and fans. Their high torque, variable speed control, and efficient operation make them suitable for driving heavy loads and providing reliable performance in demanding industrial environments.
  • Robotics: Brushless AC motors find extensive use in robotics applications. The precise control capabilities of brushless motors, coupled with their compact size and high power density, make them ideal for powering robotic arms, grippers, and other motion control systems.
  • Automotive: Brushless AC motors are increasingly being employed in electric and hybrid vehicles. They offer high power-to-weight ratios, efficient operation, and regenerative braking capabilities, making them suitable for propulsion systems, power steering, and other automotive applications.
  • Aerospace: Brushless AC motors are used in aerospace applications, including aircraft systems, control surfaces, and landing gear mechanisms. Their reliability, compactness, and high performance make them suitable for the demanding requirements of the aerospace industry.
  • Industrial Automation: Brushless AC motors play a critical role in industrial automation systems. They are used in CNC machines, robotic arms, assembly lines, and other automated processes, providing accurate and reliable motion control.

Residential Applications:

Brushless AC motors are also finding increased use in residential settings, thanks to their energy efficiency, quiet operation, and long lifespan. Some common residential applications where brushless AC motors are utilized include:

  • Appliances: Brushless AC motors are employed in various household appliances such as refrigerators, air conditioners, washing machines, and dishwashers. They offer energy-efficient operation, precise control, and reduced noise levels, enhancing the performance and user experience of these appliances.
  • HVAC Systems: Brushless AC motors are used in heating, ventilation, and air conditioning (HVAC) systems. They provide efficient and reliable operation for fans, blowers, and pumps, contributing to energy savings and optimal indoor comfort.
  • Smart Home Devices: Brushless AC motors are integrated into smart home devices, including motorized window blinds, smart locks, and automated lighting systems. They offer quiet operation, precise positioning, and energy efficiency, enhancing the convenience and functionality of these devices.
  • Power Tools: Brushless AC motors are increasingly used in power tools such as drills, saws, and sanders. They deliver high power output, longer runtime, and longer tool life compared to brushed motors, making them desirable for DIY enthusiasts and professionals alike.

With their versatility, energy efficiency, and reliability, brushless AC motors have become a preferred choice in both industrial and residential settings. They offer numerous benefits, including improved performance, reduced maintenance requirements, and enhanced energy savings, making them suitable for a wide range of applications across various sectors.

brushless ac motor

Where can individuals find reliable information on selecting and installing brushless AC motors?

When it comes to selecting and installing brushless AC motors, individuals can find reliable information from various sources. Here are some recommended sources for obtaining accurate and valuable information on this topic:

  • Manufacturer’s Documentation: The documentation provided by motor manufacturers is a valuable resource for understanding the specifications, features, and application guidelines for specific brushless AC motors. Manufacturers often provide datasheets, technical manuals, and installation guides that offer detailed information on motor selection, installation requirements, and best practices.
  • Engineering and Motor Associations: Engineering associations and motor-specific organizations often provide resources and guidelines related to motor selection and installation. These associations may offer publications, technical papers, and online resources that cover various aspects of motor technology, including brushless AC motors. Examples of such organizations include the Institute of Electrical and Electronics Engineers (IEEE) and the National Electrical Manufacturers Association (NEMA).
  • Online Motor Portals and Databases: There are online portals and databases that specialize in providing information and resources related to electric motors. These platforms may include comprehensive motor catalogs, technical articles, motor selection tools, and user forums where individuals can ask questions and seek advice from experts in the field. Examples of such platforms include Engineering360, GlobalSpec, and the Motor Systems Tool Kit.
  • Industry Publications and Technical Journals: Industry publications and technical journals focusing on electrical engineering, motor technology, or specific industries that extensively use brushless AC motors can be excellent sources of information. These publications often feature articles, case studies, and expert insights on motor selection, installation techniques, and application-specific considerations.
  • Consulting with Motor Experts: Seeking guidance from motor experts, such as electrical engineers or motor consultants, can provide personalized advice and recommendations based on specific requirements. These professionals have in-depth knowledge and experience in motor selection and installation and can assist in evaluating the application needs, considering factors such as power requirements, environmental conditions, and system integration.

It’s important to verify the credibility and reliability of the information obtained from these sources. Checking the reputation and expertise of the source, referring to multiple reliable sources, and considering up-to-date information are essential for making informed decisions regarding the selection and installation of brushless AC motors.

Ultimately, a combination of thorough research, consultation with experts, and careful consideration of the specific application requirements will help individuals find reliable information and make well-informed decisions when it comes to selecting and installing brushless AC motors.

China high quality High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine   vacuum pump brakesChina high quality High Torque Long Life 20W 90mm Planetary Brushless AC Motor for Home Electric Machine   vacuum pump brakes
editor by CX 2024-04-02