Tag Archives: quality vacuum pump

China Good quality ZD 24v 48v 110v 220v 25W 60W 90W 120W 200W 300W 400W 500W 750W High Torque Electric BLDC Brushless DC Gear Motor vacuum pump design

Product Description

Product Description

      Brushless DC Gear Motor combine high performance DC brushless motors and  motor drivers to offer excellent energy savings, high torque and speed stability as well as a wide speed control range. With brushless DC motors you can downsize your application as the motors have slim bodies and provide high power due to permanent magnets being used in the rotor.

  • Output Power from 15 W  up to 750 W 
  • Parallel Shaft, Right-Angle Shaft and Flat Hollow Shaft Gear options
  • Speed Control/Motor Driver Available

Characteridtics Of BLDC Motor

Range Of BLDC Gearmotor

Pleas click to view more detailed specification for each series of BLDC Motor.

Other Products

Company Profile

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Household Appliances, Robot, Conveyor
Operating Speed: Adjust Speed
Excitation Mode: Excited
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What factors should be considered when selecting a brushless motor for a specific application?

When selecting a brushless motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here are the key factors to take into account:

1. Power and Torque Requirements:

Determine the power and torque requirements of the application. This includes considering the desired operating speed, acceleration, and load characteristics. Select a brushless motor that can deliver the required power and torque output within the application’s operating range. Consider factors such as the motor’s power rating, torque density, and speed-torque characteristics.

2. Size and Form Factor:

Evaluate the space available for motor installation. Consider the physical dimensions and form factor of the motor to ensure it can fit within the application’s constraints. Additionally, consider the weight of the motor, especially in applications where weight is a critical factor, such as drones or portable devices.

3. Environmental Conditions:

Assess the environmental conditions in which the motor will operate. Consider factors such as temperature extremes, humidity, dust, and vibration levels. Choose a brushless motor that is designed to withstand and perform reliably in the specific environmental conditions of the application. Look for motors with appropriate protection ratings (e.g., IP ratings) and robust construction.

4. Efficiency and Energy Consumption:

Consider the desired energy efficiency of the application. Select a brushless motor with high efficiency to minimize energy consumption and maximize overall system efficiency. Efficiency can be influenced by factors such as motor design, winding configuration, and the use of advanced control techniques. Look for motors with high efficiency ratings or specific certifications, such as IE (International Efficiency) classifications.

5. Control and Feedback Requirements:

Evaluate the control and feedback requirements of the application. Determine if sensorless control or position feedback through sensors (e.g., encoders) is necessary for precise speed or position control. Consider the compatibility of the motor’s control interfaces and communication protocols with the application’s control system. Some applications may require motors with built-in control electronics or compatibility with specific motor controllers.

6. Operating Voltage and Power Supply:

Determine the available power supply and the operating voltage range of the application. Select a brushless motor that operates within the available voltage range and is compatible with the power supply infrastructure. Consider factors such as voltage ratings, current requirements, and the availability of appropriate power supply units or motor drives.

7. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the application. Consider factors such as the motor’s rated lifetime, bearing type, insulation class, and overall build quality. Look for motors from reputable manufacturers with a track record of producing reliable and durable products. Consider the availability of maintenance and support services.

8. Cost and Budget:

Consider the cost and budget limitations of the application. Balance the desired motor performance and features with the available budget. Compare the costs of different motor options, taking into account factors such as initial purchase cost, maintenance requirements, and potential energy savings over the motor’s lifetime.

9. Application-Specific Considerations:

Take into account any application-specific requirements or constraints. This may include factors such as regulatory compliance, specific certifications (e.g., safety or industry-specific certifications), compatibility with other system components, and any unique operational or functional requirements of the application.

By carefully considering these factors, you can select a brushless motor that is well-suited for the specific application, ensuring optimal performance, efficiency, reliability, and compatibility.

brushless motor

What types of sensors are commonly used in brushless motors for feedback and control?

In brushless motors, various types of sensors are commonly used for feedback and control purposes. These sensors provide essential data to monitor and control the motor’s position, speed, and other parameters. Here are some of the commonly used sensors in brushless motors:

1. Hall Effect Sensors:

Hall effect sensors are widely used in brushless motors for commutation control. Typically, three Hall effect sensors are positioned around the motor’s stator to detect the position of the rotor’s permanent magnets. By sensing the magnetic field changes, the Hall effect sensors determine the rotor’s position relative to the stator. This information is crucial for the motor’s electronic controller to apply the correct current to the motor’s windings and ensure proper commutation.

2. Encoder Sensors:

Encoders are commonly employed in brushless motors for precise position control. There are two main types of encoders used: optical encoders and magnetic encoders. Optical encoders use an optical disc with patterns and a light-emitting diode (LED) and photodetector to detect the rotation of the motor’s shaft. Magnetic encoders, on the other hand, utilize magnetic fields and sensors to measure the shaft’s position. Encoders provide high-resolution position feedback and enable accurate closed-loop control of the motor’s position.

3. Resolver Sensors:

Resolvers are another type of position sensor used in brushless motors. They consist of a rotor and a stator with windings. As the rotor rotates, the resolver measures the angular position by detecting the voltages induced in the stator windings. Resolvers are known for their durability and resistance to harsh environmental conditions, making them suitable for various industrial applications.

4. Current Sensors:

Current sensors are used to measure the current flowing through the motor’s windings. They provide feedback on the motor’s electrical load and enable monitoring of the motor’s torque output. Current sensors can be based on different principles, such as Hall effect, shunt resistors, or current transformers. By measuring the motor’s current, the control system can adjust the motor’s performance and protect it from overcurrent conditions.

5. Temperature Sensors:

Temperature sensors are utilized to monitor the motor’s temperature and prevent overheating. These sensors can be thermocouples, thermistors, or integrated temperature sensors. By continuously monitoring the motor’s temperature, the control system can adjust the motor’s operation, activate cooling mechanisms, or trigger alarms and shutdowns if the temperature exceeds safe limits.

6. Speed Sensors:

Speed sensors are employed to measure the rotational speed of the motor. They provide feedback on the motor’s speed and enable closed-loop speed control. Speed sensors can be optical or magnetic, relying on the detection of changes in position or magnetic field patterns to determine the motor’s speed.

The specific combination and utilization of these sensors depend on the motor’s design, control system requirements, and application needs. By using these sensors, brushless motors can achieve precise control, accurate position feedback, and efficient operation, making them suitable for a wide range of applications in industries such as automotive, robotics, aerospace, and industrial automation.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China Good quality ZD 24v 48v 110v 220v 25W 60W 90W 120W 200W 300W 400W 500W 750W High Torque Electric BLDC Brushless DC Gear Motor   vacuum pump design		China Good quality ZD 24v 48v 110v 220v 25W 60W 90W 120W 200W 300W 400W 500W 750W High Torque Electric BLDC Brushless DC Gear Motor   vacuum pump design
editor by CX 2024-05-15

China high quality CHINAMFG AC Gear Motor, DC Gear Motor, Brushless Gear Motor, CH, CV Motor, Planetary Gear Motor, Worm Gear Motor, Electric Motor, Packing Machine Motor vacuum pump oil near me

Product Description

TaiBang Motor Industry Group Co., Ltd. Came of ZheJiang Electromotor Industry Co., Ltd. is a professional manufacturer which combined with series gear transmission products of design, manufacture and sale promotion.We have 2 brand CHINAMFG and VTV . It occupied more than 30, 000 square metres, had more than 800 workers and more than 200 sets of advanced equipments, which operated strictly according to ISO9000 Quality management system. It had been approved series certifications of product and system for international and national, consequently, the products had warm welcome at home and overseas. 
  The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

We have been dedicating innovation for technology, system, management and craftwork, and according to guideline of high quality, high standard, precision and zero defect. It is our basic principle to provide consumer satisfied products and service by efficient and perfect distribution net and after service. 

  Our geared motor power range is from 6W-3.7KW(1/125HP to 5HP), the speed ratio is from 1: 3 to 1: 3000, output speed from 0.5rpm-500rpm, 12V,24V,48V,110V-120V, 220V-240V, 380V -415V ,AC and DC motors, all Can be made. Special motors also can be designed and manufactured. 

We have CE and UL certification. And we have exported to UK, Germany, Australia, USA, Canada, Korea, Norway etc. And well known for the world. 

Welcome to OUR FACTORY for business promotion.
Factory address:NO216,Wei16 road, HangZhou Economic Development zone , HangZhou City, ZHangZhoug, China

BRAND NAME TYPE PRICE
GPG /VTV AC GEAR MOTOR 2RK6GN-C/2GN3K 25$

DRUM MOTOR AC GEAR MOTOR DC GEAR MOTOR  PLANETARY GEARBOX

Welcome your visit and inquiry to our factory!
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 25/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

In what applications are brushless AC motors commonly used?

Brushless AC motors find extensive application in various industries and sectors due to their numerous advantages. Here are some common applications where brushless AC motors are commonly used:

  • Industrial Automation: Brushless AC motors are widely employed in industrial automation systems, including conveyor belts, robotic arms, packaging machinery, and CNC machines. Their precise control, high efficiency, and reliability make them suitable for these demanding applications.
  • Electric Vehicles (EVs): Brushless AC motors are a popular choice for electric vehicles, including electric cars, motorcycles, and scooters. They offer high torque, efficient power conversion, and regenerative braking capabilities, contributing to the overall performance and range of electric vehicles.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often use brushless AC motors in fans and blowers. The motors provide energy-efficient operation, precise airflow control, and quieter performance compared to traditional brushed motors.
  • Aerospace and Aviation: Brushless AC motors are employed in various aerospace and aviation applications, such as aircraft actuators, flight control systems, and auxiliary power units. The motors offer lightweight design, high power density, and reliable operation in demanding environments.
  • Medical Equipment: Many medical devices and equipment, including surgical tools, imaging systems, and laboratory equipment, utilize brushless AC motors. The motors provide precise control, low noise, and long life, ensuring the reliability and effectiveness of medical procedures.
  • Home Appliances: Brushless AC motors are increasingly used in home appliances such as refrigerators, washing machines, and dishwashers. They offer energy-efficient operation, reduced noise, and enhanced durability compared to traditional brushed motors.
  • Renewable Energy: Brushless AC motors play a crucial role in renewable energy systems like wind turbines and solar tracking systems. Their high efficiency and precise control contribute to optimizing energy generation and harnessing renewable resources effectively.
  • Electronics and Computer Cooling: Brushless AC motors are utilized in electronics and computer cooling applications, including fans and heatsinks. The motors provide efficient heat dissipation, reliable cooling, and quiet operation to prevent overheating and ensure the optimal performance of electronic components.

These are just a few examples of the many applications where brushless AC motors are commonly used. Their versatility, efficiency, reliability, and precise control make them an ideal choice across various industries and sectors.

brushless ac motor

What types of sensors are typically used in brushless AC motor control systems?

In brushless AC motor control systems, several types of sensors are commonly used to provide feedback and enable precise control over motor operation. These sensors help determine the position, speed, and other parameters of the motor. Here are the typical sensors used in brushless AC motor control systems:

  • Hall Effect Sensors: Hall effect sensors are widely used in brushless AC motor control systems. These sensors detect the position of the rotor magnets by measuring changes in the magnetic field. Hall effect sensors are placed strategically around the motor, typically in the stator, to detect the magnet poles as they pass by. The information from the Hall effect sensors is used by the controller to determine the rotor position and control the timing of current switching in the stator windings.
  • Resolver: A resolver is an electromagnetic sensor that provides rotor position feedback in brushless AC motor control systems. It consists of a rotor and a stator, both containing windings. The rotor winding is excited with an AC voltage, while the stator winding is used to detect the position of the magnetic field. By measuring the phase difference between the rotor and stator windings, the resolver sensor provides accurate angular position information to the controller.
  • Encoder: Encoders are commonly used in brushless AC motor control systems to provide precise position and speed feedback. There are two main types of encoders: optical encoders and magnetic encoders. Optical encoders use a light source and a patterned disc to detect rotational position and speed. Magnetic encoders, on the other hand, utilize magnetic fields and sensors to measure position and speed. Encoders provide high-resolution feedback, enabling precise control over the motor’s operation.
  • Current Sensors: Current sensors are used to measure the current flowing through the stator windings of the brushless AC motor. They provide feedback to the controller, allowing it to monitor and control the current levels accurately. By measuring the current, the controller can adjust the timing and duration of current switching, optimizing the motor’s performance and ensuring efficient operation.
  • Temperature Sensors: Temperature sensors are often integrated into brushless AC motor control systems to monitor the motor’s temperature. They provide feedback to the controller, allowing it to implement thermal protection measures when the motor exceeds safe operating temperatures. Temperature sensors help prevent motor overheating and potential damage, ensuring the motor operates within its safe temperature limits.

These sensors play a crucial role in brushless AC motor control systems by providing the necessary feedback for precise control over the motor’s operation. They enable the controller to determine rotor position, monitor current levels, measure speed, and implement various control strategies to optimize motor performance. The integration of these sensors allows for efficient and reliable operation of brushless AC motors in a wide range of applications.

brushless ac motor

How do you troubleshoot common issues with brushless AC motors?

When troubleshooting common issues with brushless AC motors, it’s important to systematically identify and address potential problems. Here’s a detailed explanation of the steps involved in troubleshooting common issues with brushless AC motors:

  1. Check Power Supply: Verify that the power supply to the motor is functioning correctly. Ensure that the voltage and frequency supplied to the motor match the specifications provided by the manufacturer. Check for any loose connections, blown fuses, or tripped circuit breakers that may be interrupting the power supply.
  2. Inspect Wiring and Connections: Examine the motor’s wiring and connections for any signs of damage, loose connections, or poor insulation. Ensure that the wiring is properly sized and connected according to the manufacturer’s guidelines. Tighten any loose connections and repair or replace any damaged wiring or insulation.
  3. Check Motor Temperature: Monitor the motor’s temperature during operation. Excessive heat can indicate issues such as overload, insufficient cooling, or problems with the motor’s ventilation system. Make sure that the motor is adequately cooled and that any cooling fans or ventilation openings are clean and unobstructed.
  4. Inspect Bearings: Check the motor’s bearings for any signs of wear, misalignment, or damage. Excessive noise, vibration, or increased heat can be indications of bearing issues. Lubricate or replace the bearings as necessary, following the manufacturer’s recommendations.
  5. Monitor Motor Performance: Observe the motor’s performance during operation. Look for any abnormal behavior such as erratic speed, excessive noise, or sudden changes in torque. Use appropriate measuring instruments to monitor parameters such as voltage, current, and speed to identify any deviations from expected values.
  6. Check Motor Control System: Evaluate the motor control system, including the motor controller or inverter, for any faults or malfunctions. Inspect the control circuitry, sensors, and feedback mechanisms. Ensure that the control signals and commands are reaching the motor correctly and that the control system is properly programmed and calibrated.
  7. Review Motor Protection Features: Check if the motor’s protection features, such as overcurrent, overvoltage, or thermal protection, are functioning correctly. Review the motor’s documentation or consult the manufacturer’s guidelines to understand the specific protection mechanisms employed and verify their proper operation.
  8. Refer to Manufacturer Documentation: Consult the motor’s documentation, technical manuals, or troubleshooting guides provided by the manufacturer. These resources often contain specific troubleshooting steps and recommendations tailored to the particular motor model. Follow the manufacturer’s guidelines for diagnosing and resolving issues.
  9. Seek Professional Assistance: If the troubleshooting steps outlined above do not resolve the issue or if the problem is beyond your expertise, it is advisable to seek assistance from qualified professionals, such as motor technicians or engineers. They can provide specialized knowledge and diagnostic tools to identify and address complex motor issues.

Remember that troubleshooting procedures may vary depending on the specific motor model, application, and environmental conditions. It’s essential to prioritize safety precautions and adhere to proper electrical and mechanical practices when working with brushless AC motors. When in doubt, consult with experts or refer to the manufacturer’s guidelines for accurate troubleshooting and resolution of issues.

China high quality CHINAMFG AC Gear Motor, DC Gear Motor, Brushless Gear Motor, CH, CV Motor, Planetary Gear Motor, Worm Gear Motor, Electric Motor, Packing Machine Motor   vacuum pump oil near me		China high quality CHINAMFG AC Gear Motor, DC Gear Motor, Brushless Gear Motor, CH, CV Motor, Planetary Gear Motor, Worm Gear Motor, Electric Motor, Packing Machine Motor   vacuum pump oil near me
editor by CX 2024-05-10

China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower vacuum pump booster

Product Description

NEMA 57 86mm Brushless BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V Dc Servo Motor for Lawn Mower
 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

Planetary Gearbox Type:

Detailed Photos

                                       Cnc Motor Kits                                                                                       Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

What is the significance of commutation in brushless motor operation, and how is it achieved?

Commutation is a critical aspect of brushless motor operation as it determines the timing and sequence of current flow in the motor windings. It is the process by which the motor’s magnetic field is switched to generate continuous rotation. The significance of commutation lies in its ability to maintain proper alignment between the magnetic field produced by the stator and the rotor’s permanent magnets, resulting in smooth and efficient motor operation. Here’s a detailed explanation of the significance of commutation in brushless motor operation and how it is achieved:

1. Magnetic Field Alignment: Commutation ensures that the magnetic field produced by the motor’s stator windings is properly aligned with the permanent magnets on the rotor. This alignment is crucial for generating the necessary torque to drive the rotor and produce rotation. By switching the current flow in the motor windings at the right time and in the right sequence, commutation ensures that the stator’s magnetic field interacts effectively with the rotor’s magnets, producing continuous and smooth rotation.

2. Efficient Power Conversion: Commutation plays a vital role in efficient power conversion within the brushless motor. As the current flows through the motor windings, commutation switches the current path to maintain the desired direction of rotation. By timely switching the current flow, commutation minimizes power losses and maximizes the energy transfer between the power supply and the motor. This efficient power conversion results in improved motor performance, higher energy efficiency, and reduced heat generation.

3. Elimination of Brushes and Commutators: Unlike brushed motors that rely on mechanical brushes and commutators for current switching, brushless motors achieve commutation electronically. This eliminates the need for brushes and commutators, which are prone to wear, friction, and electrical arcing. By replacing these mechanical components with solid-state electronic commutation, brushless motors offer several advantages, including reduced maintenance requirements, longer lifespan, and improved reliability.

4. Precise Speed Control: Commutation in brushless motors enables precise speed control. By accurately timing and sequencing the current flow in the motor windings, the control system of a brushless motor can regulate the motor’s rotational speed. This precise speed control is crucial in applications that require specific speed requirements, such as robotics, electric vehicles, and industrial automation.

5. Commutation Methods: Brushless motors achieve commutation through various methods, the most common being sensor-based commutation and sensorless commutation. Sensor-based commutation utilizes position sensors, such as Hall effect sensors or encoders, to detect the rotor’s position and determine the appropriate timing and sequence of current switching. Sensorless commutation, on the other hand, estimates the rotor position based on the back electromotive force (EMF) generated in the motor windings. Advanced control algorithms and signal processing techniques are employed to accurately estimate the rotor position and achieve precise commutation without the need for additional sensors.

In summary, commutation is of significant importance in brushless motor operation. It ensures proper alignment of the magnetic fields, enables efficient power conversion, eliminates mechanical wear components, allows for precise speed control, and contributes to the overall performance and reliability of brushless motors. Through sensor-based or sensorless commutation methods, brushless motors achieve accurate and timely switching of current flow, resulting in smooth rotation and optimal motor performance.

brushless motor

What are the primary advantages of using brushless motors in various applications?

Brushless motors offer several advantages that make them preferred choices in various applications. Here are the primary advantages of using brushless motors:

1. High Efficiency:

Brushless motors are known for their high efficiency. The absence of brushes and commutators reduces friction and electrical losses, resulting in improved power conversion and energy efficiency. This efficiency translates into lower power consumption, reduced heat generation, and longer battery life in battery-powered applications. High efficiency makes brushless motors suitable for applications where energy efficiency is crucial, such as electric vehicles, renewable energy systems, and battery-operated devices.

2. Increased Reliability:

Brushless motors offer increased reliability compared to brushed motors. The lack of brushes and commutators eliminates common points of failure in brushed motors. Brushes can wear out and require periodic replacement, while commutators can experience electrical arcing and wear. By removing these components, brushless motors have longer lifespans, reduced maintenance requirements, and higher overall reliability. This advantage is particularly important in critical applications where downtime and maintenance costs must be minimized.

3. Precise Speed and Position Control:

Brushless motors provide precise speed and position control, making them suitable for applications that require accurate motion control. The electronic commutation in brushless motors allows for precise monitoring and adjustment of motor parameters, such as speed, torque, and direction. This level of control enables smooth and precise movements, making brushless motors ideal for robotics, CNC machines, automation systems, and other applications that demand precise positioning and motion control.

4. Compact Size and High Power Density:

Brushless motors have a compact design and high power density, making them suitable for applications where space is limited. The absence of brushes and commutators allows for a more streamlined motor design, reducing the overall size and weight of the motor. This compact size makes brushless motors ideal for applications with size constraints, such as drones, portable devices, and small appliances. Despite their compact size, brushless motors can deliver high power output, making them capable of driving demanding applications.

5. Reduced Electromagnetic Interference (EMI):

Brushless motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless motors produces smoother and more controlled current waveforms, resulting in reduced EMI. This advantage is particularly important in applications where EMI can interfere with sensitive electronics or cause electromagnetic compatibility (EMC) issues. Brushless motors are commonly used in medical equipment, telecommunications, and audio/video equipment, where minimizing EMI is critical.

6. Higher Speed and Acceleration Capability:

Brushless motors offer higher speed and acceleration capabilities compared to brushed motors. The absence of brushes reduces friction and allows brushless motors to achieve higher rotational speeds. Additionally, the electronic commutation enables faster switching and control, resulting in faster acceleration and deceleration. These characteristics make brushless motors suitable for applications that require rapid movements, high-speed operation, and quick response times, such as robotics, industrial automation, and electric vehicles.

These advantages make brushless motors a preferred choice in a wide range of applications, including robotics, electric vehicles, aerospace, industrial automation, medical equipment, consumer electronics, and more. Their high efficiency, reliability, precise control, compact size, reduced EMI, and high-speed capabilities contribute to improved performance and enable innovative designs in various industries.

China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   vacuum pump booster	China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   vacuum pump booster
editor by CX 2024-05-08

China high quality Brushless Motor AC 350mm Axial Fan Motor for Cold Room vacuum pump adapter

Product Description

HangZhou CHINAMFG Electric Appliance Co Ltd. ( HangZhou HangZhou CHINAMFG Motor Factory), is a professional manufacturer of shaded fan motor, external rotor fan, FFU fan and other products. The area of our factory is about 10000 square meters. The factory has an annual production capacity of 4 million Motors and fans, and has 17 years of motor production history. Scientific quality management system and professional customized automatic production equipment ensure reliable product performance. Excellent quality comes from the professional, we use excellent quality and reasonable price to serve customer. HangZhou CHINAMFG Electrical Appliance Co Ltd. has been recognized by the industry for its integrity, strength and product quality. We cordially invite friends from all over the world to visit, guidance and business negotiation.

FAQ:
1.HOW LONG CAN I GET THE FEEDBACKS AFTER WE SENT THE INQUIRY? 

We will reply you within 12 hours in working day.

2.ARE YOU A DIRECT MANUFACTURER OR TRADING COMPANY?

We are a factory, We produce and sell all by ourselves.

3.WHAT PRODUCTS CAN YOU OFFER?

We focus on shaded pole refrigerator motors, external axial fans, FFU fans and other products.

4.WHAT APPLICATIONS DO YOUR PRODUCTS RELATE TO?

Our products cover a wide range of in refrigeration equipment and units, generally used with the compressor, but also useful in industrial ventilation and heat and so on.

5.CAN YOU DO CUSTOMIZED PRODUCTS?

Yes,we can doing customized products according to the customers’ drawings or samples.

6.HOW ABOUT THE CAPACITY OF YOUR COMPANY?

We have 8 fixed production lines.including 4 lines of shaded pole refrigerator motors, 2 lines of external fans and 2 lines of FFU fans, And our annual production capacity is over 4 million sets.

7.HOW MANY EMPLOYEES OF YOUR COMANY?WHAT ABOUT THE TECHNICISTS?

We now have more than 100 employees, including 5 engineers and 60 technicians.

8.HOW TO GUARANTEE THE QUALITY OF YOUR GOODS?

Firstly,we will do the inspection after every process.For the finished products,we will do 100% inspection according to the customers’ requirements and the international standard.
Secondly,we have advanced and complete testing equipment in the industry, which can fully ensure that we can provide customers with high-quality products, and at the same time, ensure that we can meet customers’ requirements for high quality and high performance.

9.WHAT’S THE PAYMENT TERM?

When we quote for you,we will confirm with you the way of transaction,FOB,CIF,CNF,etc.
For mass production goods, you need to pay 30% advance and70% balance pay before shipment or against copy of B/L.The common way is by T/T. D/P at sight is also acceptable.

10.HOW TO DELIVER THE GOODS TO US?

Usually we will ship the goods to you by sea,because we are in HangZhou,and we are only 200 kilometers away from the HangZhou or ZheJiang Port,it is very convenient and efficient to ship goods to any other countries.

11.WHERE ARE YOUR PRODUCTS MAINLY EXPORTED TO?

Our products are mainly exported to Russia, Pakistan,  India, Thailand, Ukraine, Iraq, Europe and many other countries.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Metal
Blade Material: Cast Iron
Type: Axial Fan
Samples:
US$ 40/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless ac motor

How does the lack of brushes in brushless AC motors contribute to their longevity?

The absence of brushes in brushless AC motors significantly contributes to their longevity and overall durability. Here’s how:

1. Reduced Wear and Tear: Brushes and commutators in traditional brushed motors are prone to wear and tear due to the constant friction and mechanical contact. As the brushes make contact with the commutator, they experience abrasion and gradually wear down over time. In brushless AC motors, the lack of brushes eliminates this source of wear, resulting in reduced mechanical stress on the motor components.

2. Elimination of Brush Dust Accumulation: Brushed motors generate carbon dust as the brushes wear down. This dust can accumulate on the commutator and other motor parts, potentially causing electrical shorts, sparking, and reduced motor performance. In brushless AC motors, the absence of brushes eliminates the generation of carbon dust, reducing the risk of dust accumulation and related issues.

3. Minimized Brush Sparks: Brushes in brushed motors can produce sparks during operation, leading to electrical arcing and potential damage to the commutator and brushes themselves. These sparks can also introduce electrical noise and interfere with sensitive electronic components. Brushless AC motors, with their brushless design, eliminate the occurrence of brush sparks, resulting in smoother and quieter operation.

4. Improved Commutation: In brushed motors, the commutator is responsible for transferring electrical power to the rotor windings through the brushes. This mechanical commutation introduces limitations in terms of speed, torque, and reliability. In contrast, brushless AC motors employ electronic commutation, which is more precise and efficient. Electronic commutation eliminates the need for physical contact, allowing for greater control over the motor’s performance and reducing the potential for commutation-related issues.

5. Enhanced Electrical Efficiency: Brushes and commutators in brushed motors can cause energy losses due to friction and electrical resistance. These losses result in reduced overall motor efficiency. By eliminating brushes and commutators, brushless AC motors minimize energy losses, leading to improved electrical efficiency and reduced heat generation.

Collectively, these factors contribute to the longevity of brushless AC motors. The absence of brushes reduces mechanical wear, eliminates brush-related issues such as dust accumulation and sparks, allows for more precise electronic commutation, and improves overall electrical efficiency. As a result, brushless AC motors can operate reliably for longer periods with minimal maintenance requirements, making them a durable and long-lasting solution for various applications.

brushless ac motor

Can brushless AC motors be used in both industrial and residential settings?

Yes, brushless AC motors can be used in both industrial and residential settings. The versatility and advantages of brushless AC motors make them suitable for a wide range of applications. Here’s a detailed explanation:

Industrial Applications:

Brushless AC motors are widely used in various industrial applications due to their high efficiency, reliability, and precise control. Some common industrial applications where brushless AC motors are utilized include:

  • Industrial Machinery: Brushless AC motors are often used in industrial machinery such as conveyor systems, pumps, compressors, and fans. Their high torque, variable speed control, and efficient operation make them suitable for driving heavy loads and providing reliable performance in demanding industrial environments.
  • Robotics: Brushless AC motors find extensive use in robotics applications. The precise control capabilities of brushless motors, coupled with their compact size and high power density, make them ideal for powering robotic arms, grippers, and other motion control systems.
  • Automotive: Brushless AC motors are increasingly being employed in electric and hybrid vehicles. They offer high power-to-weight ratios, efficient operation, and regenerative braking capabilities, making them suitable for propulsion systems, power steering, and other automotive applications.
  • Aerospace: Brushless AC motors are used in aerospace applications, including aircraft systems, control surfaces, and landing gear mechanisms. Their reliability, compactness, and high performance make them suitable for the demanding requirements of the aerospace industry.
  • Industrial Automation: Brushless AC motors play a critical role in industrial automation systems. They are used in CNC machines, robotic arms, assembly lines, and other automated processes, providing accurate and reliable motion control.

Residential Applications:

Brushless AC motors are also finding increased use in residential settings, thanks to their energy efficiency, quiet operation, and long lifespan. Some common residential applications where brushless AC motors are utilized include:

  • Appliances: Brushless AC motors are employed in various household appliances such as refrigerators, air conditioners, washing machines, and dishwashers. They offer energy-efficient operation, precise control, and reduced noise levels, enhancing the performance and user experience of these appliances.
  • HVAC Systems: Brushless AC motors are used in heating, ventilation, and air conditioning (HVAC) systems. They provide efficient and reliable operation for fans, blowers, and pumps, contributing to energy savings and optimal indoor comfort.
  • Smart Home Devices: Brushless AC motors are integrated into smart home devices, including motorized window blinds, smart locks, and automated lighting systems. They offer quiet operation, precise positioning, and energy efficiency, enhancing the convenience and functionality of these devices.
  • Power Tools: Brushless AC motors are increasingly used in power tools such as drills, saws, and sanders. They deliver high power output, longer runtime, and longer tool life compared to brushed motors, making them desirable for DIY enthusiasts and professionals alike.

With their versatility, energy efficiency, and reliability, brushless AC motors have become a preferred choice in both industrial and residential settings. They offer numerous benefits, including improved performance, reduced maintenance requirements, and enhanced energy savings, making them suitable for a wide range of applications across various sectors.

brushless ac motor

Can you explain the concept of back electromotive force (BEMF) in brushless AC motors?

Back electromotive force (BEMF) is an important concept in brushless AC motors. It refers to the voltage that is induced in the motor’s windings when the rotor rotates in the magnetic field generated by the stator. BEMF plays a crucial role in the operation and control of brushless AC motors. Here’s a detailed explanation of the concept of BEMF and its significance:

When an electric current flows through the motor’s stator windings, it creates a magnetic field that interacts with the permanent magnets or field windings on the rotor. As the rotor spins, the magnetic field lines cut across the stator windings, inducing a voltage in the windings. This induced voltage opposes the applied voltage and is referred to as the back electromotive force (BEMF).

BEMF is a consequence of Faraday’s law of electromagnetic induction, which states that a changing magnetic field induces an electromotive force in a conductor. In the case of brushless AC motors, the rotating rotor and the fixed stator create a changing magnetic field that induces a voltage in the stator windings.

The magnitude and waveform of the BEMF depend on several factors, including the speed of the motor, the number of winding turns, the strength of the magnetic field, and the design of the motor. At low speeds, the BEMF is relatively low, while at high speeds, the BEMF increases proportionally with the speed of the motor.

The BEMF in brushless AC motors serves several important purposes:

  • Motor Control: BEMF is used as feedback in motor control systems to determine the rotor position and speed. By measuring the BEMF, the motor controller can accurately synchronize the switching of the inverter to energize the stator windings at the correct time, ensuring optimal motor performance.
  • Commutation: BEMF provides information about the position of the rotor relative to the stator windings. This information is crucial for determining when to switch the current flow between different windings to generate the rotating magnetic field necessary for motor operation. By monitoring the BEMF, the motor controller can precisely control the commutation sequence, ensuring smooth and efficient motor operation.
  • Speed Regulation: BEMF is directly related to the speed of the motor. By measuring the BEMF, the motor controller can accurately determine the speed of the motor and adjust the applied voltage or frequency to maintain the desired speed. This speed regulation capability allows brushless AC motors to operate at variable speeds, providing flexibility and energy efficiency in various applications.
  • Overvoltage Protection: BEMF also plays a role in protecting the motor from overvoltage conditions. If the motor is being driven at high speed and the load suddenly decreases or the motor decelerates rapidly, the BEMF can increase significantly. The motor controller can monitor the BEMF and detect this overvoltage condition, triggering protective measures to prevent damage to the motor or other components.

In summary, back electromotive force (BEMF) is the voltage induced in the stator windings of brushless AC motors as a result of the rotor’s rotation in the magnetic field. BEMF is used for motor control, commutation, speed regulation, and overvoltage protection. Understanding and utilizing BEMF is essential for efficient and precise operation of brushless AC motors.

China high quality Brushless Motor AC 350mm Axial Fan Motor for Cold Room   vacuum pump adapter	China high quality Brushless Motor AC 350mm Axial Fan Motor for Cold Room   vacuum pump adapter
editor by CX 2024-05-08

China Good quality Lower Noise High Speed Brushless BLDC Electric Motor for Hair Dryer/Pet Dryer vacuum pump and compressor

Product Description

Product Description

BLDC Motor is featured with electronically commutation, extremely wide speed range and an outstandingly long life span, and  mainly used in applications that low noise and low vibration is a prime requirement, such as consumer robot,coffee grinder, fan&air purifier, vacuum & blower ,etc.

In such cases, BLDC motors are for your products: Your products are designed to apply to a quiet environment. Your projects require a wider life span and higher reliability. Smaller sizes or compact designs of motors can be offered to accommodate various external product designs.
In some cases, controllability is critical, for example, a bldc motor run under closed-loop could output the exact speed as designed.

F8M110  is recommended for household appliances, such as fans and air purifiers. Please keep the following requirements in mind before requesting customization: motor size, controller, motor ratings, gearbox(if any), or other significant factors.

Parameters:

Outer Diameter φ42mm Rated Power 134±10%W Rated Voltage 110V/220V Air Volume@Rated Speed 31.1L/s
Lenght 55.3mm Rated Speed 80000RPM Air Speed@Rated Speed 3.96m/s Noise ≤68dB

Drawing:

Product Characteristics

Innovative Product Display

Product Usage

Company Profile

Certifications

Exhibition

FAQ

Q: Can I visit your factory before we place the order?
A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical  answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please 
contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other    shipping way. Please contact us if you need other shipping 
way before shipment.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

Can brushless motors be used in both low-power and high-power applications?

Yes, brushless motors can be used in both low-power and high-power applications. The versatility and scalability of brushless motor technology allow them to be employed across a wide range of power requirements. Here’s how brushless motors are utilized in both low-power and high-power applications:

1. Low-Power Applications:

In low-power applications, brushless motors offer several advantages over other motor types. They are capable of delivering efficient and precise motion control even at low power levels. Some examples of low-power applications where brushless motors are commonly used include:

  • Consumer Electronics: Brushless motors are employed in devices such as drones, camera gimbals, computer cooling fans, and electric toothbrushes. These applications require compact and lightweight motors with low power consumption and precise control.
  • Home Appliances: Brushless motors find applications in various home appliances, including refrigerators, washing machines, air conditioners, and fans. They provide energy-efficient operation and contribute to the overall performance and longevity of these appliances.
  • Office Equipment: Brushless motors are used in printers, scanners, copiers, and other office equipment. They offer quiet operation, precise movement, and low power consumption, making them suitable for these applications.
  • Automotive Systems: Brushless motors are increasingly utilized in automotive systems, including HVAC blowers, power windows, seat adjustment mechanisms, and electric power steering. They provide efficient and reliable operation while minimizing power consumption.

2. High-Power Applications:

Brushless motors are also capable of meeting the demands of high-power applications, offering excellent performance and reliability. They are suitable for applications that require high torque, rapid acceleration, and precise control at elevated power levels. Some examples of high-power applications where brushless motors are commonly used include:

  • Electric Vehicles (EVs): Brushless motors are extensively employed in electric vehicles for propulsion and drivetrain systems. They offer high torque output, efficient power conversion, and precise control, enabling EVs to achieve high performance and extended range.
  • Aerospace and Aviation: Brushless motors find applications in aircraft systems such as flight control surfaces, landing gear actuation, and environmental control systems. These applications require high-power motors with reliable and precise motion control capabilities.
  • Industrial Automation: Brushless motors are utilized in industrial machinery and automation systems, including CNC machines, robotics, and conveyor systems. They provide high torque density, fast response times, and accurate positioning, enabling efficient and precise control in demanding industrial environments.
  • Marine and Propulsion Systems: Brushless motors are used in marine applications, such as electric propulsion systems for boats and ships. They offer high power output, durability, and resistance to harsh environmental conditions.

These examples demonstrate that brushless motors are versatile and can be applied across a wide spectrum of power requirements. Whether in low-power or high-power applications, brushless motors provide advantages such as high efficiency, precise control, low maintenance, and improved performance. The specific power requirements and performance criteria of an application will determine the selection and customization of brushless motors to ensure optimal performance and reliability.

brushless motor

How do brushless motors contribute to energy efficiency compared to brushed motors?

Brushless motors offer several key advantages over brushed motors when it comes to energy efficiency. Here’s how brushless motors contribute to energy efficiency compared to brushed motors:

1. Elimination of Brush Friction:

In brushed motors, the brushes make physical contact with the commutator, resulting in friction and wear. This friction causes energy losses in the form of heat. Brushless motors, on the other hand, do not use brushes or commutators. The absence of brush friction significantly reduces energy losses, resulting in improved energy efficiency. The elimination of brush friction allows brushless motors to operate at higher efficiencies and reduces the amount of wasted energy dissipated as heat.

2. Reduced Electrical Resistance:

Brushed motors rely on the brushes and commutator to transfer electrical current to the rotor windings. However, these components introduce electrical resistance, leading to energy losses in the form of voltage drops and heat generation. In brushless motors, electrical current is transferred to the stator windings through electronic commutation, which eliminates the resistance caused by brushes and commutators. The reduced electrical resistance in brushless motors results in higher energy efficiency and minimizes power losses.

3. Improved Power Conversion:

Brushless motors employ electronic commutation, allowing for more precise control of the current flow in the stator windings. This precise control enables optimized power conversion, ensuring that the electrical energy supplied to the motor is efficiently converted into mechanical power. Brushed motors, on the other hand, rely on mechanical commutation, which is less efficient and leads to power losses in the form of sparks and arcing. The improved power conversion in brushless motors contributes to their higher energy efficiency.

4. Regenerative Braking:

Brushless motors have the capability of regenerative braking, which further enhances their energy efficiency. During braking or deceleration, the motor can act as a generator, converting the kinetic energy of the moving load back into electrical energy. This regenerated energy can be fed back into the power source or stored in batteries or capacitors for later use. Regenerative braking reduces energy wastage and improves overall system efficiency by recovering and reusing energy that would otherwise be dissipated as heat in traditional braking systems.

5. Optimal Sizing and Control:

Brushless motors can be designed and controlled to match the specific requirements of the application, resulting in optimal sizing and operation. By selecting the appropriate motor size, torque rating, and control parameters, the motor can operate at its most efficient operating point. This tailored approach ensures that the motor operates with minimal energy losses and maximizes its energy efficiency. In contrast, brushed motors may be oversized or underutilized for certain applications, leading to less efficient operation and higher energy consumption.

Overall, brushless motors offer higher energy efficiency compared to brushed motors due to the elimination of brush friction, reduced electrical resistance, improved power conversion, regenerative braking capabilities, and the ability to optimize motor sizing and control. These energy-saving features make brushless motors a preferred choice in various applications, particularly those that prioritize energy efficiency, such as electric vehicles, renewable energy systems, and battery-powered devices.

China Good quality Lower Noise High Speed Brushless BLDC Electric Motor for Hair Dryer/Pet Dryer   vacuum pump and compressor	China Good quality Lower Noise High Speed Brushless BLDC Electric Motor for Hair Dryer/Pet Dryer   vacuum pump and compressor
editor by CX 2024-05-06

China Good quality 24V-48V 95W 4000rpm Brushless DC BLDC Motor for Mower vacuum pump ac

Product Description

Brushless DC Motor for Quad Multi-copter Racing Drone Motors 

Feature
1. Stator size is optional
2. Safe, reliable, low noise, good starting, long life
3. Strong power

Model No Load Current (A) No Load Speed(r/min) Rated Voltage(V) Rated Speed (rpm/min) Rated Power (W) Torque Rated (mNm) Peak Toruqe (mNm) Peak Current(A)  Cn rpm/mNm
Y57165E-5710801 0.4 6600 24 4500 48.6 100.3 9323.5 8.3 0.2

 

ABOUT US

CHINAMFG group was set up in 2006.we always focus on micro-motors for household electrical appliance and industry appliance since setting up.currently we have 2 professional micro-motor factories in China  which severally located in HangZhou city and HangZhou city.it has an area of 25,000 square CHINAMFG plants and more than 300 employees, annual output  is 3 million pcs and has 5 million pcs annual producing capacity.after several years development,we had built a great reputation in the market and got more and more customers’  trust in the world.
We  started from shaded pole motors  at beginning, up to now,our product  included of shaded pole motors,synchronous motors,stepping motors ,capacitor motors, BLDC motors, DC motors and compressors. Our product  are widely used for making refrigerators, freezers, micro-wave ovens, air warmers, air exhausters, ventilators,ovens, air filter, massage machines and many other equipments.
As a realiable quality guaranty,Ritscher has complete R&D departement,QC department,producing department,purchase department etc. has perfect producing equipment like Aluminum diecasting, Zinc diecasting, Sheet metal stamping, Plastic injection molding etc. also test/ detection device like multiplex temp measuring device, performance parameter inspection device, Phenol peptide solution pinhole tester,Anechoic room etc.
 
Endeavoring to provide the best product and service to customers,we always do the most effort to become an outstanding manufacturer of micro motors.
CHINAMFG is always willing to establish sincere business relationship with friends from all over the world.
Welcome contact with us!
 
Take CHINAMFG ,enjoy modern life!

Our company FAQ for you

(1) Q: What kind motors you can provide?
A:For now,we mainly provide Kitchen Hood Motor,DC Motor,Gear Motor,Fan Motor Refrigerator Motor,Hair Dryer Motor Blender Motor Mixer Motor,
Shade Pole Motor,Capacitor Motor,BLDC Motor PMDC Motor,Synchronous Motor,Stepping Motor etc.

(2) Q: Is it possible to visit your factory
A: Sure. But please kindly keep us posted a few days in advance. We need to check our
schedule to see if we are available then.

(3) Q: Can I get some samples
A: It depends. If only a few samples for personal use or replacement, I am afraid it will
be difficult for us to provide, because all of our motors are custom made and no stock
available if there is no further needs. If just sample testing before the official order and
our MOQ, price and other terms are acceptable, we’d love to provide samples.

(4) Q: Is there a MOQ for your motors?
A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

Can brushless motors be used in environments with high temperatures or extreme conditions?

Yes, brushless motors can be designed and used in environments with high temperatures or extreme conditions, provided that they are appropriately engineered and equipped with suitable materials and protective measures. Here’s a detailed explanation of the factors to consider and the measures taken to enable brushless motors to operate in such challenging environments:

1. Thermal Management: High temperatures can have detrimental effects on the performance and lifespan of brushless motors. To mitigate these effects, thermal management techniques are employed. This includes the use of efficient heat sinks, cooling fans, or liquid cooling systems to dissipate heat generated during motor operation. Additionally, the motor’s design may incorporate insulation materials that can withstand high temperatures and prevent heat transfer to sensitive components.

2. High-Temperature Materials: Brushless motors intended for use in high-temperature environments are constructed using materials that can withstand the elevated temperatures. This includes the use of high-temperature-resistant magnets, such as samarium cobalt (SmCo) or neodymium iron boron (NdFeB) magnets, which can maintain their magnetic properties at high temperatures. Similarly, the motor’s components, such as the stator, windings, and insulation materials, are selected or treated to withstand the specific temperature requirements.

3. Sealing and Enclosure: Extreme conditions often involve exposure to dust, moisture, or other contaminants that can adversely affect motor performance. To protect brushless motors in such environments, they are typically equipped with robust sealing and enclosure measures. This may include the use of gaskets, O-rings, or specialized seals to prevent the ingress of dust, water, or corrosive substances. In some cases, motors are housed in IP (Ingress Protection) rated enclosures, providing a higher level of protection against environmental factors.

4. Vibration and Shock Resistance: Some extreme environments may subject the motors to high levels of vibration or mechanical shocks. Brushless motors designed for such conditions are engineered to withstand these external forces. They may incorporate features such as reinforced mounting structures, vibration-damping materials, or shock-absorbing mechanisms to ensure reliable operation and prevent damage to internal components.

5. Environmental Testing and Certification: To ensure the suitability of brushless motors for high-temperature or extreme environments, they often undergo rigorous testing and certification processes. These tests may include temperature cycling, humidity testing, thermal shock testing, vibration testing, and ingress protection testing. Compliance with industry standards and certifications, such as UL (Underwriters Laboratories) or IEC (International Electrotechnical Commission) standards, provides assurance of the motor’s reliability and performance in specific environmental conditions.

It’s important to note that the specific temperature and environmental limits of a brushless motor can vary depending on the design, construction, and intended application. Therefore, when considering the use of brushless motors in high-temperature or extreme conditions, it is essential to consult with motor manufacturers or experts who can provide guidance based on the specific requirements and constraints of the intended application.

brushless motor

How does the absence of brushes impact the maintenance requirements of brushless motors?

The absence of brushes in brushless motors has a significant impact on their maintenance requirements. Here’s how the absence of brushes affects the maintenance of brushless motors:

1. Reduced Wear and Tear:

One of the primary advantages of brushless motors is that they do not have brushes that make physical contact with the commutator. In brushed motors, the brushes wear down over time, leading to brush replacement or repair. The absence of brushes in brushless motors eliminates this wear and tear, resulting in reduced maintenance needs. Brushless motors can operate for longer periods without the need for brush replacement or maintenance related to brush wear.

2. Decreased Risk of Brush Failure:

Brushes in brushed motors are subject to wear, heat, and carbon dust accumulation, which can lead to brush failure or arcing. Brush failure can cause motor performance issues, increased electrical noise, and even motor damage. Brushless motors, on the other hand, do not have brushes that can fail. The absence of brushes reduces the risk of brush-related failures, minimizing the need for maintenance and repair associated with brush replacement or troubleshooting brush-related issues.

3. Improved Reliability and Durability:

The elimination of brushes in brushless motors improves their overall reliability and durability. Without brushes, there is no physical contact or friction that can cause wear, heat generation, or electrical resistance. This results in a more robust motor design with fewer components prone to failure. Brushless motors are known for their long service life and high reliability, requiring minimal maintenance to keep them operational.

4. Simplified Maintenance Procedures:

Brushless motors typically require less maintenance compared to brushed motors. The absence of brushes simplifies maintenance procedures since there is no need to inspect, clean, or replace brushes. Routine maintenance for brushless motors usually involves checking the motor’s connections, ensuring proper cooling, and verifying the integrity of the electronic components and wiring. These maintenance tasks are generally less frequent and less labor-intensive compared to maintaining brushed motors.

5. Potential Cost Savings:

The reduced maintenance requirements of brushless motors can result in cost savings over their lifetime. With fewer maintenance tasks and a longer service life, the overall maintenance and repair costs associated with brushless motors are typically lower compared to brushed motors. The reduced need for brush replacement, brush inspections, and related troubleshooting can contribute to cost savings and improved operational efficiency.

In summary, the absence of brushes in brushless motors significantly impacts their maintenance requirements. The elimination of brushes reduces wear and tear, decreases the risk of brush failure, improves reliability and durability, simplifies maintenance procedures, and can potentially lead to cost savings. These advantages make brushless motors an attractive choice in applications where low maintenance and long service life are essential, such as in electric vehicles, industrial automation, and other systems that require reliable and efficient motion control.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China Good quality 24V-48V 95W 4000rpm Brushless DC BLDC Motor for Mower   vacuum pump acChina Good quality 24V-48V 95W 4000rpm Brushless DC BLDC Motor for Mower   vacuum pump ac
editor by CX 2024-05-02

China Good quality ZD Planetary Gearbox Manufacture Electric AC/DC Brush Or Brushless Gear Motor For Automation Solutions vacuum pump diy

Product Description

Model Selection

        ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor,  Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations. 

• Model Selection

Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Range Of Gear Motor

Pleas click the click button to view more detailed specification:

 

Company Profile

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Type: Z2
Customization:
Available

|

brushless ac motor

What is the role of electronic commutation in brushless AC motors?

Electronic commutation plays a crucial role in the operation of brushless AC motors. It enables precise control over the motor’s performance, including speed, torque, and direction of rotation. Here’s a detailed explanation of the role of electronic commutation:

In a brushless AC motor, the rotor consists of permanent magnets or electromagnets, while the stator contains multiple coils of wire known as windings. The stator windings are energized with alternating current (AC) to create a rotating magnetic field. However, for the motor to rotate smoothly and maintain synchronization with the rotating magnetic field, the current flow in the stator windings must be switched at specific moments.

This is where electronic commutation comes into play. Electronic commutation involves the use of sensors, typically Hall effect sensors, placed inside the motor to detect the position of the rotor magnets. These sensors provide feedback to an electronic controller, which determines the precise timing for switching the current flow in the stator windings.

The electronic controller uses the information from the sensors to determine which windings should be energized and when. It generates signals to activate the appropriate power switches or transistors, which control the current flow in the stator windings. By switching the current flow in a carefully timed manner, the controller ensures that the magnetic force on the rotor magnets is always in the correct direction to generate continuous rotation.

Electronic commutation offers several advantages in brushless AC motors:

  • Precise Control: Electronic commutation allows for precise control over the motor’s operation. The controller can adjust the timing and duration of current switching to achieve the desired speed, torque, and direction of rotation.
  • Efficiency: By precisely controlling the current flow, electronic commutation minimizes energy losses and improves overall motor efficiency. The controller can optimize the motor’s performance to match the load requirements, reducing unnecessary power consumption.
  • Smooth Operation: Electronic commutation results in smoother motor operation compared to mechanical commutation in brushed motors. The absence of physical brushes and commutators eliminates the mechanical limitations and potential sources of friction, leading to quieter and vibration-free operation.
  • Variable Speed Control: Electronic commutation facilitates variable speed control in brushless AC motors. By adjusting the timing and frequency of current switching, the controller can vary the motor’s rotational speed over a wide range, offering flexibility in different applications.
  • Improved Reliability: Electronic commutation eliminates the wear and tear associated with brushes and commutators in traditional brushed motors. This contributes to the overall reliability and durability of brushless AC motors, reducing the need for frequent maintenance and replacement of worn-out components.

In summary, electronic commutation plays a vital role in brushless AC motors by providing precise control over the motor’s operation, improving efficiency, enabling variable speed control, ensuring smooth operation, and enhancing overall reliability. It is the key mechanism that allows brushless AC motors to deliver efficient and accurate motor performance in various applications.

brushless ac motor

What are the maintenance requirements for brushless AC motors?

Brushless AC motors are known for their relatively low maintenance requirements compared to traditional brushed motors. However, they still require some maintenance to ensure optimal performance and longevity. Here’s a detailed explanation of the maintenance requirements for brushless AC motors:

1. Cleanliness: Keeping the motor clean is essential for its proper functioning. Regularly inspect the motor for any dust, dirt, or debris accumulation. Use compressed air or a soft brush to gently remove any foreign particles that may have collected on the motor’s surface or cooling vents. Cleanliness helps prevent overheating and ensures efficient operation.

2. Ventilation: Brushless AC motors generate heat during operation, and proper ventilation is crucial for dissipating this heat. Ensure that the cooling vents or fans associated with the motor are not obstructed. Clear any obstructions that may impede the airflow around the motor. Adequate ventilation helps prevent overheating and extends the motor’s lifespan.

3. Bearing Lubrication: Brushless AC motors typically incorporate bearings to support the rotating shaft. Some motors may have sealed or maintenance-free bearings, while others may require periodic lubrication. Consult the motor manufacturer’s guidelines or specifications to determine the lubrication requirements. Proper lubrication minimizes friction and wear, ensuring smooth operation and prolonging bearing life.

4. Inspect and Tighten Connections: Periodically inspect the electrical connections of the motor, including the power cables, terminals, and control wiring. Loose or corroded connections can lead to voltage drops, excessive heat, and electrical failures. Ensure that all connections are secure and tight. If any signs of corrosion are present, clean the connections and apply an appropriate anti-corrosion treatment.

5. Check Insulation: Insulation plays a critical role in maintaining the integrity of the motor’s electrical components. Inspect the motor’s insulation regularly for any signs of damage, such as cracks, wear, or deterioration. Damaged insulation can lead to short circuits and motor failures. If any insulation issues are detected, consult a professional technician or the motor manufacturer for proper repair or replacement.

6. Monitor Vibration and Noise: Unusual vibration or excessive noise during motor operation can indicate underlying issues. Regularly monitor the motor for any abnormal vibrations or noise levels. Excessive vibration can lead to premature component failure, while unusual noise may indicate bearing wear or misalignment. If significant vibration or noise is observed, it is recommended to consult a professional technician to diagnose and address the problem.

7. Periodic Maintenance: Depending on the specific motor and its operating conditions, periodic maintenance tasks may be required, such as bearing replacement, rotor balancing, or inspection of internal components. Consult the motor manufacturer’s guidelines or recommendations for the recommended maintenance intervals and procedures specific to your motor.

It’s important to note that the specific maintenance requirements for brushless AC motors may vary depending on factors such as motor design, operating environment, and usage conditions. Consulting the motor manufacturer’s guidelines and recommendations is crucial to ensure proper maintenance practices and maximize the motor’s performance and lifespan.

brushless ac motor

How do you troubleshoot common issues with brushless AC motors?

When troubleshooting common issues with brushless AC motors, it’s important to systematically identify and address potential problems. Here’s a detailed explanation of the steps involved in troubleshooting common issues with brushless AC motors:

  1. Check Power Supply: Verify that the power supply to the motor is functioning correctly. Ensure that the voltage and frequency supplied to the motor match the specifications provided by the manufacturer. Check for any loose connections, blown fuses, or tripped circuit breakers that may be interrupting the power supply.
  2. Inspect Wiring and Connections: Examine the motor’s wiring and connections for any signs of damage, loose connections, or poor insulation. Ensure that the wiring is properly sized and connected according to the manufacturer’s guidelines. Tighten any loose connections and repair or replace any damaged wiring or insulation.
  3. Check Motor Temperature: Monitor the motor’s temperature during operation. Excessive heat can indicate issues such as overload, insufficient cooling, or problems with the motor’s ventilation system. Make sure that the motor is adequately cooled and that any cooling fans or ventilation openings are clean and unobstructed.
  4. Inspect Bearings: Check the motor’s bearings for any signs of wear, misalignment, or damage. Excessive noise, vibration, or increased heat can be indications of bearing issues. Lubricate or replace the bearings as necessary, following the manufacturer’s recommendations.
  5. Monitor Motor Performance: Observe the motor’s performance during operation. Look for any abnormal behavior such as erratic speed, excessive noise, or sudden changes in torque. Use appropriate measuring instruments to monitor parameters such as voltage, current, and speed to identify any deviations from expected values.
  6. Check Motor Control System: Evaluate the motor control system, including the motor controller or inverter, for any faults or malfunctions. Inspect the control circuitry, sensors, and feedback mechanisms. Ensure that the control signals and commands are reaching the motor correctly and that the control system is properly programmed and calibrated.
  7. Review Motor Protection Features: Check if the motor’s protection features, such as overcurrent, overvoltage, or thermal protection, are functioning correctly. Review the motor’s documentation or consult the manufacturer’s guidelines to understand the specific protection mechanisms employed and verify their proper operation.
  8. Refer to Manufacturer Documentation: Consult the motor’s documentation, technical manuals, or troubleshooting guides provided by the manufacturer. These resources often contain specific troubleshooting steps and recommendations tailored to the particular motor model. Follow the manufacturer’s guidelines for diagnosing and resolving issues.
  9. Seek Professional Assistance: If the troubleshooting steps outlined above do not resolve the issue or if the problem is beyond your expertise, it is advisable to seek assistance from qualified professionals, such as motor technicians or engineers. They can provide specialized knowledge and diagnostic tools to identify and address complex motor issues.

Remember that troubleshooting procedures may vary depending on the specific motor model, application, and environmental conditions. It’s essential to prioritize safety precautions and adhere to proper electrical and mechanical practices when working with brushless AC motors. When in doubt, consult with experts or refer to the manufacturer’s guidelines for accurate troubleshooting and resolution of issues.

China Good quality ZD Planetary Gearbox Manufacture Electric AC/DC Brush Or Brushless Gear Motor For Automation Solutions   vacuum pump diyChina Good quality ZD Planetary Gearbox Manufacture Electric AC/DC Brush Or Brushless Gear Motor For Automation Solutions   vacuum pump diy
editor by CX 2024-04-30

China high quality High Torque Electric Stepper Magnetic Micro Brushless Servo Stepper/Stepping Car Conversion Kit Outboard Boat Motor with ISO vacuum pump distributors

Product Description

Product Description

Magnetic PM Monitored motions stepper dc driving motor
Specification of Magnetic PM Monitored motions stepper dc driving motor

15BY PM Step Motor
Basic Info
Item Data
Tem. Rise 50K max
Working Tem. (-20ºC~+80ºC)
Insulation Resistance 100MΩ min  500VDC
Surge Test 500VAC for 1min
Insulation Class E
Weight 10g

 

Specification
PN Step Angle Voltage Current Resistance Inductance Drive in torque aligning torque Starting Frequency Rotate Frequency Noisy Level
(°) V DC mA Ω mH g.cm(200pps) g.cm pps pps db
15BY45-10-4 18 5 250 10 13 3.5 8 500 600 30
15BY45-30-4 18 12 150 30 45 3.5 8 500 600 30

About our company

Probond motors designs brush, brushless, stepper, hysteresis and linear motors to meet customers requirements.

Our motors use standard and special components with customer selected torque/speed requirements that can be modified to your applications.

The AC/DC gear motors are based CHINAMFG to distinct magetic circuits that optimize motor design for high speed low torque and low speed high torque.

These motors give you lower rotational losses, excellent thermal transfer, interchangeable end caps, easily sealed. Options include connectors, encoders, shaft modifications, dimensional changes, etc.

Probond motor owns professional sales team and engineer team with more than 10 years experience in motor industry, based on China mainland handling overseas business for years, we know your needs better than others.

Probond Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our hot products on sell in 2017 with highly quality level and competitive price.

Please kindly contact us to get a catalogue.

Shipping&Payment

Terms of price FOB,CIF,CFR,EXW,DDP,etc.
Terms of payment 100% T/T in advance for samples
Bulk quantity payment way 
can be negotited
Warranty 12 months limited warranty once the items are delivered to the buyer.
Lead time Usually within 2 weeks for trial orders, 
within 3 weeks for bulk orders.
Package Carton o plywood pallet.
Place of loading ZheJiang , HangZhou, etc.
Shipment carrier Items are usually shipped via Fedex,DHL,TNT,UPS,EMS for trial orders and via vessel for bulk orders.
Delivery time Usually within 5 working days by Express                                                                                       
15-30 working days by vessel

 

Our promise to our Customers:
1.  Answer customer’s inquiry within 2 working days.
2.  Reply to our customer questions & Concerns within 3 working days.
3.  Acknowledge Customer purchase orders within 24 hours.
4.  Standard Lead time is within 4 weeks.  Respond to special product development within 15 weeks.
5.  Flexible delivery methods:  By air, sea and express carrier using the customer’s forwarder.

Contact us:
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Printing Equipment
Speed: Constant Speed
Number of Stator: Two-Phase
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Are there advancements or innovations in brushless motor technology worth noting?

Yes, there have been significant advancements and innovations in brushless motor technology that are worth noting. These advancements have led to improved performance, efficiency, and versatility of brushless motors across various industries. Here’s a detailed explanation of some notable advancements:

1. High-Efficiency Designs:

Advancements in brushless motor design have led to increased efficiency. Motor manufacturers have focused on optimizing the motor’s electromagnetic design, reducing internal power losses, and improving overall energy conversion efficiency. This has resulted in brushless motors with higher power density, improved torque-to-weight ratios, and reduced energy consumption. These high-efficiency designs have found applications in sectors such as electric vehicles, renewable energy systems, and industrial automation, where energy efficiency is crucial.

2. Advanced Control Techniques:

The development of advanced control techniques has greatly enhanced the performance and functionality of brushless motors. Motor control algorithms, such as sensorless control and field-oriented control (FOC), enable precise control of motor speed, torque, and position. These techniques make brushless motors more responsive, efficient, and capable of delivering smooth and precise motion control. Advanced control techniques have revolutionized applications such as robotics, drones, CNC machines, and electric propulsion systems.

3. Integrated Electronics:

Advancements in electronics integration have led to the development of brushless motors with integrated control electronics. These motors, often referred to as “smart” or “intelligent” motors, incorporate built-in motor controllers, sensors, and communication interfaces. The integration of electronics simplifies motor installation, reduces wiring complexity, and enables seamless integration with control systems. Smart brushless motors find applications in automation, robotics, and Internet of Things (IoT) devices, where compactness, ease of use, and connectivity are essential.

4. Sensor Technology:

New sensor technologies have emerged to enhance the performance and reliability of brushless motors. Hall effect sensors and encoders are commonly used in brushless motors to provide feedback on rotor position, enabling precise control and commutation. Recent advancements in sensor technologies have led to the development of more compact, accurate, and durable sensors. Additionally, the integration of sensorless control methods, which rely on motor voltage and current measurements, has eliminated the need for position sensors in some applications, reducing cost and complexity.

5. Materials and Manufacturing:

Advancements in materials and manufacturing techniques have contributed to the improvement of brushless motor performance. The use of high-performance magnet materials, such as neodymium magnets, has increased motor power density and efficiency. Advanced manufacturing processes, such as precision machining and automated assembly, have improved the consistency and quality of brushless motors. Additionally, advancements in thermal management techniques and materials have enabled brushless motors to operate at higher temperatures, expanding their suitability for demanding environments.

6. Miniaturization and Integration:

Brushless motors have seen advancements in miniaturization and integration, allowing for compact and versatile designs. Miniature brushless motors are now available in smaller form factors, making them suitable for applications with limited space, such as medical devices, drones, and consumer electronics. Furthermore, the integration of multiple motors within a single housing, known as multi-axis or multi-DOF systems, has enabled complex motion control and robotics applications, including robotic arms and articulated mechanisms.

7. Application-Specific Customization:

Advancements in brushless motor technology have also facilitated application-specific customization. Motor manufacturers are increasingly offering customization options to meet the specific needs and requirements of various industries. This includes tailoring motor designs, winding configurations, cooling systems, and control parameters to optimize performance and efficiency for specific applications. Customization allows for better integration, improved performance, and enhanced reliability in diverse industries such as aerospace, automotive, and industrial automation.

In summary, advancements and innovations in brushless motor technology have resulted in higher efficiency designs, advanced control techniques, integrated electronics, improved sensor technology, enhanced materials and manufacturing processes, miniaturization and integration, as well as application-specific customization. These advancements have expanded the capabilities and applications of brushless motors, making them indispensable in numerous industries, ranging from automotive and robotics to renewable energy and consumer electronics.

brushless motor

Are there specific applications where brushless motors are more suitable than others?

Yes, there are specific applications where brushless motors are more suitable than others. The unique characteristics and advantages of brushless motors make them well-suited for certain types of applications. Here are some examples:

1. Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs):

Brushless motors are highly suitable for EVs and HEVs due to their high efficiency, precise control, and fast acceleration capabilities. They are commonly used in electric drivetrains to provide propulsion and drive the wheels. Brushless motors contribute to the overall energy efficiency of electric vehicles and help maximize the range and performance.

2. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They offer high torque, precise position control, and rapid acceleration, making them ideal for robotic arms, joints, and grippers. Brushless motors enable accurate and controlled movements, contributing to the efficiency and productivity of industrial and collaborative robots.

3. Aerospace and Aviation:

Brushless motors find applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations.

4. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

5. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of applications where brushless motors are more suitable than others. However, it’s important to note that brushless motors have a wide range of applications and can be utilized in various industries and systems where efficient and precise motion control is required. The specific requirements of an application, such as power, speed, torque, size, and control, will determine the suitability of brushless motors.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China high quality High Torque Electric Stepper Magnetic Micro Brushless Servo Stepper/Stepping Car Conversion Kit Outboard Boat Motor with ISO   vacuum pump distributorsChina high quality High Torque Electric Stepper Magnetic Micro Brushless Servo Stepper/Stepping Car Conversion Kit Outboard Boat Motor with ISO   vacuum pump distributors
editor by CX 2024-04-30

China high quality Electrical Motor DC Motor Gear Motor Brushless DC Motor BLDC Electric AC Motor Mirco Motor AC Motor China Motor Manufacturer Customized Motor Geared Motor vacuum pump engine

Product Description

Product Description

In such cases, BLDC Motor with Planetary Gear Box is appropriate for your products: Your projects require self locking and more running & holding torque. You are looking to exact position control on your mechanical products.

BLDC Motor BL42R50M12 with Planetary Gear Box is recommended for projects involving smart products and medical equipment, such as door opener, foldable fitness equipment, smart switch, servo motors and etc.

Please consider the following requirements before requesting customization: speed, holding torque, space available in your product, or other significant factors.

We offer various customization options to meet specific needs:
-Wider supply voltage range, additional voltage types,
-Extended temperature range, suitable for low and high-temperature environments
-Suitable for vacuum environments
-Modified for high-speed or high-load applications
-Motors that meet increased electrical or mechanical tolerance requirements

-Configurable shaft length and second shaft end -Modified shaft sizes and gear configurations

Drawing:

Characteristic of BLDC Motor

Innovative Product Display

Product Usage

Company Profile

Certifications

Exhibition

FAQ

FAQ
Q: Can I visit your factory before we place the order?

A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical  answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please 
contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other shipping way. 
Please contact us if you need other shipping  way before shipment.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2-6
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

Are there advancements or innovations in brushless motor technology worth noting?

Yes, there have been significant advancements and innovations in brushless motor technology that are worth noting. These advancements have led to improved performance, efficiency, and versatility of brushless motors across various industries. Here’s a detailed explanation of some notable advancements:

1. High-Efficiency Designs:

Advancements in brushless motor design have led to increased efficiency. Motor manufacturers have focused on optimizing the motor’s electromagnetic design, reducing internal power losses, and improving overall energy conversion efficiency. This has resulted in brushless motors with higher power density, improved torque-to-weight ratios, and reduced energy consumption. These high-efficiency designs have found applications in sectors such as electric vehicles, renewable energy systems, and industrial automation, where energy efficiency is crucial.

2. Advanced Control Techniques:

The development of advanced control techniques has greatly enhanced the performance and functionality of brushless motors. Motor control algorithms, such as sensorless control and field-oriented control (FOC), enable precise control of motor speed, torque, and position. These techniques make brushless motors more responsive, efficient, and capable of delivering smooth and precise motion control. Advanced control techniques have revolutionized applications such as robotics, drones, CNC machines, and electric propulsion systems.

3. Integrated Electronics:

Advancements in electronics integration have led to the development of brushless motors with integrated control electronics. These motors, often referred to as “smart” or “intelligent” motors, incorporate built-in motor controllers, sensors, and communication interfaces. The integration of electronics simplifies motor installation, reduces wiring complexity, and enables seamless integration with control systems. Smart brushless motors find applications in automation, robotics, and Internet of Things (IoT) devices, where compactness, ease of use, and connectivity are essential.

4. Sensor Technology:

New sensor technologies have emerged to enhance the performance and reliability of brushless motors. Hall effect sensors and encoders are commonly used in brushless motors to provide feedback on rotor position, enabling precise control and commutation. Recent advancements in sensor technologies have led to the development of more compact, accurate, and durable sensors. Additionally, the integration of sensorless control methods, which rely on motor voltage and current measurements, has eliminated the need for position sensors in some applications, reducing cost and complexity.

5. Materials and Manufacturing:

Advancements in materials and manufacturing techniques have contributed to the improvement of brushless motor performance. The use of high-performance magnet materials, such as neodymium magnets, has increased motor power density and efficiency. Advanced manufacturing processes, such as precision machining and automated assembly, have improved the consistency and quality of brushless motors. Additionally, advancements in thermal management techniques and materials have enabled brushless motors to operate at higher temperatures, expanding their suitability for demanding environments.

6. Miniaturization and Integration:

Brushless motors have seen advancements in miniaturization and integration, allowing for compact and versatile designs. Miniature brushless motors are now available in smaller form factors, making them suitable for applications with limited space, such as medical devices, drones, and consumer electronics. Furthermore, the integration of multiple motors within a single housing, known as multi-axis or multi-DOF systems, has enabled complex motion control and robotics applications, including robotic arms and articulated mechanisms.

7. Application-Specific Customization:

Advancements in brushless motor technology have also facilitated application-specific customization. Motor manufacturers are increasingly offering customization options to meet the specific needs and requirements of various industries. This includes tailoring motor designs, winding configurations, cooling systems, and control parameters to optimize performance and efficiency for specific applications. Customization allows for better integration, improved performance, and enhanced reliability in diverse industries such as aerospace, automotive, and industrial automation.

In summary, advancements and innovations in brushless motor technology have resulted in higher efficiency designs, advanced control techniques, integrated electronics, improved sensor technology, enhanced materials and manufacturing processes, miniaturization and integration, as well as application-specific customization. These advancements have expanded the capabilities and applications of brushless motors, making them indispensable in numerous industries, ranging from automotive and robotics to renewable energy and consumer electronics.

brushless motor

Are there specific applications where brushless motors are more suitable than others?

Yes, there are specific applications where brushless motors are more suitable than others. The unique characteristics and advantages of brushless motors make them well-suited for certain types of applications. Here are some examples:

1. Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs):

Brushless motors are highly suitable for EVs and HEVs due to their high efficiency, precise control, and fast acceleration capabilities. They are commonly used in electric drivetrains to provide propulsion and drive the wheels. Brushless motors contribute to the overall energy efficiency of electric vehicles and help maximize the range and performance.

2. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They offer high torque, precise position control, and rapid acceleration, making them ideal for robotic arms, joints, and grippers. Brushless motors enable accurate and controlled movements, contributing to the efficiency and productivity of industrial and collaborative robots.

3. Aerospace and Aviation:

Brushless motors find applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations.

4. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

5. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of applications where brushless motors are more suitable than others. However, it’s important to note that brushless motors have a wide range of applications and can be utilized in various industries and systems where efficient and precise motion control is required. The specific requirements of an application, such as power, speed, torque, size, and control, will determine the suitability of brushless motors.

brushless motor

How do brushless motors contribute to energy efficiency compared to brushed motors?

Brushless motors offer several key advantages over brushed motors when it comes to energy efficiency. Here’s how brushless motors contribute to energy efficiency compared to brushed motors:

1. Elimination of Brush Friction:

In brushed motors, the brushes make physical contact with the commutator, resulting in friction and wear. This friction causes energy losses in the form of heat. Brushless motors, on the other hand, do not use brushes or commutators. The absence of brush friction significantly reduces energy losses, resulting in improved energy efficiency. The elimination of brush friction allows brushless motors to operate at higher efficiencies and reduces the amount of wasted energy dissipated as heat.

2. Reduced Electrical Resistance:

Brushed motors rely on the brushes and commutator to transfer electrical current to the rotor windings. However, these components introduce electrical resistance, leading to energy losses in the form of voltage drops and heat generation. In brushless motors, electrical current is transferred to the stator windings through electronic commutation, which eliminates the resistance caused by brushes and commutators. The reduced electrical resistance in brushless motors results in higher energy efficiency and minimizes power losses.

3. Improved Power Conversion:

Brushless motors employ electronic commutation, allowing for more precise control of the current flow in the stator windings. This precise control enables optimized power conversion, ensuring that the electrical energy supplied to the motor is efficiently converted into mechanical power. Brushed motors, on the other hand, rely on mechanical commutation, which is less efficient and leads to power losses in the form of sparks and arcing. The improved power conversion in brushless motors contributes to their higher energy efficiency.

4. Regenerative Braking:

Brushless motors have the capability of regenerative braking, which further enhances their energy efficiency. During braking or deceleration, the motor can act as a generator, converting the kinetic energy of the moving load back into electrical energy. This regenerated energy can be fed back into the power source or stored in batteries or capacitors for later use. Regenerative braking reduces energy wastage and improves overall system efficiency by recovering and reusing energy that would otherwise be dissipated as heat in traditional braking systems.

5. Optimal Sizing and Control:

Brushless motors can be designed and controlled to match the specific requirements of the application, resulting in optimal sizing and operation. By selecting the appropriate motor size, torque rating, and control parameters, the motor can operate at its most efficient operating point. This tailored approach ensures that the motor operates with minimal energy losses and maximizes its energy efficiency. In contrast, brushed motors may be oversized or underutilized for certain applications, leading to less efficient operation and higher energy consumption.

Overall, brushless motors offer higher energy efficiency compared to brushed motors due to the elimination of brush friction, reduced electrical resistance, improved power conversion, regenerative braking capabilities, and the ability to optimize motor sizing and control. These energy-saving features make brushless motors a preferred choice in various applications, particularly those that prioritize energy efficiency, such as electric vehicles, renewable energy systems, and battery-powered devices.

China high quality Electrical Motor DC Motor Gear Motor Brushless DC Motor BLDC Electric AC Motor Mirco Motor AC Motor China Motor Manufacturer Customized Motor Geared Motor   vacuum pump engine	China high quality Electrical Motor DC Motor Gear Motor Brushless DC Motor BLDC Electric AC Motor Mirco Motor AC Motor China Motor Manufacturer Customized Motor Geared Motor   vacuum pump engine
editor by CX 2024-04-26

China high quality 80mm 25W Pellet Burner AC Gear Motor with High Power Electric Washing Machine Brushless vacuum pump design

Product Description

TaiBang Motor Industry Group Co., Ltd.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

Motor Model Instruction

5RK40GN-CM

        5 R K 40 R GN C M
Frame Size Type Motor series Power Speed
Control
Motor
Shaft Type Voltage Accessory
2:60mm

3:70mm

4:80mm

5:90mm

6:104mm

I:Induction

R:Reversible

T:Torque

K series 6W

15W

25W

40W

60W

90W

120W

140W

180W

200W
 

A:Round Shaft

GN:Bevel Gear Shaft
       (6W,15W,25W,40W)

GU:Bevel Gear Shaft
      (60W,90W,120W,140W,180W,200W)

A:Single Phase 110V

C:Single Phase 220V

S:3-Phase 220V

S3:3-Phase 380V

S4:3-Phase 440V

T/P:Thermally Protected

F:Fan

M:Electro-magnetic
    Brake

Gear Head Model Instruction

5GN-100K

5 GN 100 K  
Frame Size Shaft Type Gear Reduction Ratio Bearing Type Other information
2:60mm

3:70mm

4:80mm

5:90mm

6:104mm
 

GN:Bevel Gear Shaft
      (60#,70#,80#,90# reduction gear head)

GU:Bevel Gear Shaft
      (100# reduction gear head)

GM:Intermediate Gear Head

GS:Gearhead with ears

1:100 K:Standard Rolling Bearing

RT:Right Angle With Axile

RC:Right Angle With Hollow Shaft
 

Sch as shaft diameter,shaft length,etc.

Specification of motor 40W 90mm Fixed speed AC gear motor

Type  Gear Tooth Output Shaft Power
(W)
Frequency
(Hz)
Voltage
(V)
Current
(A)
Start Torque
(g.cm)
Rated Gearbox Type
Torque
(g.cm)
Speed
(rpm)
Bearing Gearbox Middle Gearbox
Reversible Motor 5RK40GN-C 40 50 220 0.45 3000 3000 1300 5GN/GU-K 5GN10X
40 60 220 0.41 2500 2515 1550 5GN/GU-K 5GN10X

Gear Head Torque Table(Kg.cm)                                                                                                                                                                                         (kg.cm×9.8÷100)=N.m

Output Speed :RPM 500 300 200 150 120 100 75 60 50 30 20 15 10 7.5 6 5 3
Speed Ratio 50Hz 3 5 7.5 10 12.5 15 20 25 30 50 75 100 150 200 250 300 500
60Hz 3.6 6 9   15 18   30 36 60 90 120 180   300 360 600
Allowed
Torque
40W kg.cm 6.7 11 16 21.3 28 33 42 54 65 108 150 150 150 150 150 150 150
60W kg.cm 10 16 24 32 40 48 64 77 93 150 150 150 150 150 150 150 150
90W kg.cm 14 23 35 46 58 69 92 110 133 200 200 200 200 200 200 200 200
120W kg.cm 19 30.7 46 61 77 92 123 147 177 200 200 200 200 200 200 200 200
Note: Speed figures are based on synchronous speed, The actual output speed, under rated torque conditions, is about 10-20% less than synchronous speed, a grey background indicates output shaft of geared motor rotates in the same direction as output shaft of motor. A white background indicates rotates rotation in the opposite direction.

Drawing:5RK40GN-C/5GN3~20K(Short gearbox shell 43mm)

Drawing:5RK40GN-C/5GN25~180K(Short gearbox shell 61mm)

Above drawing is for standard screw hole.If need through hole, terminal box, or electronic magnet brake, need to tell the seller.

Connection Diagram:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

In what applications are brushless AC motors commonly used?

Brushless AC motors find extensive application in various industries and sectors due to their numerous advantages. Here are some common applications where brushless AC motors are commonly used:

  • Industrial Automation: Brushless AC motors are widely employed in industrial automation systems, including conveyor belts, robotic arms, packaging machinery, and CNC machines. Their precise control, high efficiency, and reliability make them suitable for these demanding applications.
  • Electric Vehicles (EVs): Brushless AC motors are a popular choice for electric vehicles, including electric cars, motorcycles, and scooters. They offer high torque, efficient power conversion, and regenerative braking capabilities, contributing to the overall performance and range of electric vehicles.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often use brushless AC motors in fans and blowers. The motors provide energy-efficient operation, precise airflow control, and quieter performance compared to traditional brushed motors.
  • Aerospace and Aviation: Brushless AC motors are employed in various aerospace and aviation applications, such as aircraft actuators, flight control systems, and auxiliary power units. The motors offer lightweight design, high power density, and reliable operation in demanding environments.
  • Medical Equipment: Many medical devices and equipment, including surgical tools, imaging systems, and laboratory equipment, utilize brushless AC motors. The motors provide precise control, low noise, and long life, ensuring the reliability and effectiveness of medical procedures.
  • Home Appliances: Brushless AC motors are increasingly used in home appliances such as refrigerators, washing machines, and dishwashers. They offer energy-efficient operation, reduced noise, and enhanced durability compared to traditional brushed motors.
  • Renewable Energy: Brushless AC motors play a crucial role in renewable energy systems like wind turbines and solar tracking systems. Their high efficiency and precise control contribute to optimizing energy generation and harnessing renewable resources effectively.
  • Electronics and Computer Cooling: Brushless AC motors are utilized in electronics and computer cooling applications, including fans and heatsinks. The motors provide efficient heat dissipation, reliable cooling, and quiet operation to prevent overheating and ensure the optimal performance of electronic components.

These are just a few examples of the many applications where brushless AC motors are commonly used. Their versatility, efficiency, reliability, and precise control make them an ideal choice across various industries and sectors.

brushless ac motor

What types of sensors are typically used in brushless AC motor control systems?

In brushless AC motor control systems, several types of sensors are commonly used to provide feedback and enable precise control over motor operation. These sensors help determine the position, speed, and other parameters of the motor. Here are the typical sensors used in brushless AC motor control systems:

  • Hall Effect Sensors: Hall effect sensors are widely used in brushless AC motor control systems. These sensors detect the position of the rotor magnets by measuring changes in the magnetic field. Hall effect sensors are placed strategically around the motor, typically in the stator, to detect the magnet poles as they pass by. The information from the Hall effect sensors is used by the controller to determine the rotor position and control the timing of current switching in the stator windings.
  • Resolver: A resolver is an electromagnetic sensor that provides rotor position feedback in brushless AC motor control systems. It consists of a rotor and a stator, both containing windings. The rotor winding is excited with an AC voltage, while the stator winding is used to detect the position of the magnetic field. By measuring the phase difference between the rotor and stator windings, the resolver sensor provides accurate angular position information to the controller.
  • Encoder: Encoders are commonly used in brushless AC motor control systems to provide precise position and speed feedback. There are two main types of encoders: optical encoders and magnetic encoders. Optical encoders use a light source and a patterned disc to detect rotational position and speed. Magnetic encoders, on the other hand, utilize magnetic fields and sensors to measure position and speed. Encoders provide high-resolution feedback, enabling precise control over the motor’s operation.
  • Current Sensors: Current sensors are used to measure the current flowing through the stator windings of the brushless AC motor. They provide feedback to the controller, allowing it to monitor and control the current levels accurately. By measuring the current, the controller can adjust the timing and duration of current switching, optimizing the motor’s performance and ensuring efficient operation.
  • Temperature Sensors: Temperature sensors are often integrated into brushless AC motor control systems to monitor the motor’s temperature. They provide feedback to the controller, allowing it to implement thermal protection measures when the motor exceeds safe operating temperatures. Temperature sensors help prevent motor overheating and potential damage, ensuring the motor operates within its safe temperature limits.

These sensors play a crucial role in brushless AC motor control systems by providing the necessary feedback for precise control over the motor’s operation. They enable the controller to determine rotor position, monitor current levels, measure speed, and implement various control strategies to optimize motor performance. The integration of these sensors allows for efficient and reliable operation of brushless AC motors in a wide range of applications.

brushless ac motor

Where can individuals find reliable information on selecting and installing brushless AC motors?

When it comes to selecting and installing brushless AC motors, individuals can find reliable information from various sources. Here are some recommended sources for obtaining accurate and valuable information on this topic:

  • Manufacturer’s Documentation: The documentation provided by motor manufacturers is a valuable resource for understanding the specifications, features, and application guidelines for specific brushless AC motors. Manufacturers often provide datasheets, technical manuals, and installation guides that offer detailed information on motor selection, installation requirements, and best practices.
  • Engineering and Motor Associations: Engineering associations and motor-specific organizations often provide resources and guidelines related to motor selection and installation. These associations may offer publications, technical papers, and online resources that cover various aspects of motor technology, including brushless AC motors. Examples of such organizations include the Institute of Electrical and Electronics Engineers (IEEE) and the National Electrical Manufacturers Association (NEMA).
  • Online Motor Portals and Databases: There are online portals and databases that specialize in providing information and resources related to electric motors. These platforms may include comprehensive motor catalogs, technical articles, motor selection tools, and user forums where individuals can ask questions and seek advice from experts in the field. Examples of such platforms include Engineering360, GlobalSpec, and the Motor Systems Tool Kit.
  • Industry Publications and Technical Journals: Industry publications and technical journals focusing on electrical engineering, motor technology, or specific industries that extensively use brushless AC motors can be excellent sources of information. These publications often feature articles, case studies, and expert insights on motor selection, installation techniques, and application-specific considerations.
  • Consulting with Motor Experts: Seeking guidance from motor experts, such as electrical engineers or motor consultants, can provide personalized advice and recommendations based on specific requirements. These professionals have in-depth knowledge and experience in motor selection and installation and can assist in evaluating the application needs, considering factors such as power requirements, environmental conditions, and system integration.

It’s important to verify the credibility and reliability of the information obtained from these sources. Checking the reputation and expertise of the source, referring to multiple reliable sources, and considering up-to-date information are essential for making informed decisions regarding the selection and installation of brushless AC motors.

Ultimately, a combination of thorough research, consultation with experts, and careful consideration of the specific application requirements will help individuals find reliable information and make well-informed decisions when it comes to selecting and installing brushless AC motors.

China high quality 80mm 25W Pellet Burner AC Gear Motor with High Power Electric Washing Machine Brushless   vacuum pump design		China high quality 80mm 25W Pellet Burner AC Gear Motor with High Power Electric Washing Machine Brushless   vacuum pump design
editor by CX 2024-04-25