Tag Archives: permanent magnet motor

China wholesaler High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor wholesaler

Product Description

Product Description

Feature: 
A. High power range from 5W to 20KW
B. Rich stock and fast shipping time in 10 working days
C. Easy for speed & direction adjustment
D. 16mm to 220mm size range with low noisy
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
J. Permanent magnet brushless dc motor
K.High-performance and stable matching driver and controller
High Speed 12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor with Controller

Style# Rated power(W) Rated voltag(V) Rated speed(r/min) Rated torque(N.m)  Peak torque(N.m) Rated current(A)  L=Motor length(mm)
D5BLD450-48A-30S 450W  DC48V  3000r/min  1.43 4.29 11.7A 90mm

Other Specification form:

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Flange Size

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 14 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 85/Piece
1 Piece(Min.Order)

|

Order Sample

brushless dc motor
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What role do electronic speed controllers (ESCs) play in brushless motor systems?

Electronic Speed Controllers (ESCs) play a crucial role in brushless motor systems as they are responsible for controlling the speed, direction, and performance of the motor. Here’s a detailed explanation of the role of electronic speed controllers in brushless motor systems:

1. Power Regulation: One of the primary functions of an ESC is to regulate the power supplied to the brushless motor. The ESC acts as an intermediary between the power source (such as a battery) and the motor, ensuring that the motor receives the appropriate voltage and current to operate at the desired speed and torque levels. The ESC monitors the input power and adjusts it based on the control signals it receives.

2. Commutation: Brushless motors require precise commutation, which involves switching the current flow in the motor windings to maintain proper magnetic field alignment and generate rotation. The ESC is responsible for coordinating the commutation process by electronically timing and sequencing the current pulses sent to the motor windings. This ensures smooth and efficient motor operation, allowing the motor to generate the desired torque and rotational speed.

3. Speed Control: ESCs enable precise speed control in brushless motor systems. By adjusting the timing and duration of the current pulses sent to the motor windings, the ESC can regulate the motor’s rotational speed. This speed control functionality is essential in various applications, such as drones, RC vehicles, robotics, and industrial automation, where precise speed adjustments are required to achieve the desired performance and functionality.

4. Direction Control: In addition to speed control, ESCs also provide direction control for brushless motors. By reversing the sequence of the current pulses sent to the motor windings, the ESC can change the direction of rotation of the motor. This allows for bi-directional operation, enabling the motor to perform tasks that require both clockwise and counterclockwise rotation.

5. Protection and Safety Features: ESCs often incorporate various protection and safety features to safeguard the motor and the overall system. These features may include overcurrent protection, overtemperature protection, low-voltage cutoff, and motor lock-up detection. By monitoring various parameters and conditions, the ESC can detect potential issues or abnormalities and take appropriate actions to prevent damage to the motor, ESC, or other components.

6. Interface and Control: ESCs provide an interface for external control and communication. They are typically equipped with input connectors to receive control signals from a receiver or a microcontroller, allowing for remote control or integration into a larger control system. Additionally, ESCs may offer advanced control features such as programmability, adjustable acceleration profiles, and compatibility with various control protocols (e.g., PWM, PPM, or CAN bus).

7. Efficiency and Performance Optimization: ESCs contribute to the overall efficiency and performance optimization of brushless motor systems. Through advanced control algorithms and power electronics, ESCs can minimize power losses, maximize energy conversion efficiency, and optimize the motor’s performance characteristics. This results in improved system efficiency, longer battery life, and enhanced motor performance.

In summary, electronic speed controllers (ESCs) play a vital role in brushless motor systems by regulating power, coordinating commutation, enabling speed and direction control, providing protection and safety features, offering control interfaces, and optimizing system efficiency and performance. The ESC acts as the central control unit that bridges the gap between the power source, the motor, and the external control system, ensuring smooth and reliable operation of brushless motors across a wide range of applications.

brushless motor

How does the absence of brushes impact the maintenance requirements of brushless motors?

The absence of brushes in brushless motors has a significant impact on their maintenance requirements. Here’s how the absence of brushes affects the maintenance of brushless motors:

1. Reduced Wear and Tear:

One of the primary advantages of brushless motors is that they do not have brushes that make physical contact with the commutator. In brushed motors, the brushes wear down over time, leading to brush replacement or repair. The absence of brushes in brushless motors eliminates this wear and tear, resulting in reduced maintenance needs. Brushless motors can operate for longer periods without the need for brush replacement or maintenance related to brush wear.

2. Decreased Risk of Brush Failure:

Brushes in brushed motors are subject to wear, heat, and carbon dust accumulation, which can lead to brush failure or arcing. Brush failure can cause motor performance issues, increased electrical noise, and even motor damage. Brushless motors, on the other hand, do not have brushes that can fail. The absence of brushes reduces the risk of brush-related failures, minimizing the need for maintenance and repair associated with brush replacement or troubleshooting brush-related issues.

3. Improved Reliability and Durability:

The elimination of brushes in brushless motors improves their overall reliability and durability. Without brushes, there is no physical contact or friction that can cause wear, heat generation, or electrical resistance. This results in a more robust motor design with fewer components prone to failure. Brushless motors are known for their long service life and high reliability, requiring minimal maintenance to keep them operational.

4. Simplified Maintenance Procedures:

Brushless motors typically require less maintenance compared to brushed motors. The absence of brushes simplifies maintenance procedures since there is no need to inspect, clean, or replace brushes. Routine maintenance for brushless motors usually involves checking the motor’s connections, ensuring proper cooling, and verifying the integrity of the electronic components and wiring. These maintenance tasks are generally less frequent and less labor-intensive compared to maintaining brushed motors.

5. Potential Cost Savings:

The reduced maintenance requirements of brushless motors can result in cost savings over their lifetime. With fewer maintenance tasks and a longer service life, the overall maintenance and repair costs associated with brushless motors are typically lower compared to brushed motors. The reduced need for brush replacement, brush inspections, and related troubleshooting can contribute to cost savings and improved operational efficiency.

In summary, the absence of brushes in brushless motors significantly impacts their maintenance requirements. The elimination of brushes reduces wear and tear, decreases the risk of brush failure, improves reliability and durability, simplifies maintenance procedures, and can potentially lead to cost savings. These advantages make brushless motors an attractive choice in applications where low maintenance and long service life are essential, such as in electric vehicles, industrial automation, and other systems that require reliable and efficient motion control.

brushless motor

What are the primary advantages of using brushless motors in various applications?

Brushless motors offer several advantages that make them preferred choices in various applications. Here are the primary advantages of using brushless motors:

1. High Efficiency:

Brushless motors are known for their high efficiency. The absence of brushes and commutators reduces friction and electrical losses, resulting in improved power conversion and energy efficiency. This efficiency translates into lower power consumption, reduced heat generation, and longer battery life in battery-powered applications. High efficiency makes brushless motors suitable for applications where energy efficiency is crucial, such as electric vehicles, renewable energy systems, and battery-operated devices.

2. Increased Reliability:

Brushless motors offer increased reliability compared to brushed motors. The lack of brushes and commutators eliminates common points of failure in brushed motors. Brushes can wear out and require periodic replacement, while commutators can experience electrical arcing and wear. By removing these components, brushless motors have longer lifespans, reduced maintenance requirements, and higher overall reliability. This advantage is particularly important in critical applications where downtime and maintenance costs must be minimized.

3. Precise Speed and Position Control:

Brushless motors provide precise speed and position control, making them suitable for applications that require accurate motion control. The electronic commutation in brushless motors allows for precise monitoring and adjustment of motor parameters, such as speed, torque, and direction. This level of control enables smooth and precise movements, making brushless motors ideal for robotics, CNC machines, automation systems, and other applications that demand precise positioning and motion control.

4. Compact Size and High Power Density:

Brushless motors have a compact design and high power density, making them suitable for applications where space is limited. The absence of brushes and commutators allows for a more streamlined motor design, reducing the overall size and weight of the motor. This compact size makes brushless motors ideal for applications with size constraints, such as drones, portable devices, and small appliances. Despite their compact size, brushless motors can deliver high power output, making them capable of driving demanding applications.

5. Reduced Electromagnetic Interference (EMI):

Brushless motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless motors produces smoother and more controlled current waveforms, resulting in reduced EMI. This advantage is particularly important in applications where EMI can interfere with sensitive electronics or cause electromagnetic compatibility (EMC) issues. Brushless motors are commonly used in medical equipment, telecommunications, and audio/video equipment, where minimizing EMI is critical.

6. Higher Speed and Acceleration Capability:

Brushless motors offer higher speed and acceleration capabilities compared to brushed motors. The absence of brushes reduces friction and allows brushless motors to achieve higher rotational speeds. Additionally, the electronic commutation enables faster switching and control, resulting in faster acceleration and deceleration. These characteristics make brushless motors suitable for applications that require rapid movements, high-speed operation, and quick response times, such as robotics, industrial automation, and electric vehicles.

These advantages make brushless motors a preferred choice in a wide range of applications, including robotics, electric vehicles, aerospace, industrial automation, medical equipment, consumer electronics, and more. Their high efficiency, reliability, precise control, compact size, reduced EMI, and high-speed capabilities contribute to improved performance and enable innovative designs in various industries.

China wholesaler High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor   wholesaler China wholesaler High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor   wholesaler
editor by CX 2024-05-08

China Standard Customized 45kw -75kw 12000-24000rpm Brushless AC Permanent Magnet High Speed Electric Motor a/c vacuum pump

Product Description

45KW-75KW 9600-12000 RPM Brushless AC Permanent Magnet Motor

Product Feature
1.Suitable for the 12000rpm high speed
2.High power & high torque
3.High efficiency
4.Small size
5.Low noise low vibration
6.Patented cooling structure
7.Easy maintenance and long life time
8.Durable, reliable

Specifications
Model type: SRPM205M8XO45
Voltage: 380V AC
Rated Power: 45KW
Rate Torque : 36 N.m
Working speed: 12000rpm
Efficiency: 96.3%
Service Factor: S1
Isolation: H/F
Water/dust Proof: IP54(IP67 option)
Pole Number: 8
N Weight: 35KG
Cooling Method: Oil
Position Signal: Resolver (optional)
Installation Method: B35

Customized range:
Rated Power: 5~200KW
Working speed: 10000~24000rpm
Cooling method: oil, air or water based on your projects
Installation: B3, B5, B35, V1 or other options if needed

Application
High-speed Compressors,Fans,Pumps

Other motors you will be interested in

Motor type Voltage
(V AC)
Rated power
(kW)
Rated torque (N.m) Rated speed
(rpm)
Efficiency
(%)
Service Factor Insulation Ingress protection Pole Number Weight
(kg)
Cooling Method Position Signal Installation Method
SRPM151M8XW11 380 11 11 9600 96 S1 H/F IP67 8 10 Oil circulation Resolver B35
SRPM205M8XO45 380 45 36 12000 96.3 S1 H/F IP67 8 35 Oil circulation Resolver B35
SRPM205M8XO55 380 55 43.8 12000 96.3 S1 H/F IP67 8 38 Oil circulation Resolver B35
SRPM205M8XO75 380 75 59.7 12000 96.5 S1 H/F IP67 8 43 Oil circulation Resolver B35
SRPM205M8XO90 380 90 71.6 12000 96.5 S1 H/F IP67 8 47 Oil circulation Resolver B35
SRPM205M8XO110 380 110 87.6 12000 96.5 S1 H/F IP67 8 75 Oil circulation Resolver B35
SRPM205M8XO132 380 132 105 12000 96.5 S1 H/F IP67 8 80 Oil circulation Resolver B35
SRPM205M8XO160 380 160 127.3 12000 96.5 S1 H/F IP67 8 87 Oil circulation Resolver B35
SRPM205M8XO185 380 185 147.2 12000 96.5 S1 H/F IP67 8 95 Oil circulation Resolver B35

FAQ
1. Can performanent magnet synchronous motor be used as generator? 

Yes. Permanent magnet synchronous motor  can work as a generator because of its special working theory. If it runs CW as a motor, then runs CCW as a generator. But please kindly note, if when you want to work it as a generator, you need to change a suitable motor controller with AFE function
 
2. Why can not directly use 3 phase ac supply voltage to start permanent magnet synchronous motor? 
Becuase rotor is with big innertia, and magetic files spins so fast that static rotor has no way to spin with magetic filed. 
 
3. Any special technical request on this motor’s VFD driver? And Do you have such driver? 
Permanent magnet synchronous motor’s driver should be vector control VFD with special inner software, such as CHINAMFG 6SE70 series, Yakawa CR5 series, ABB ACS800 series, CHINAMFG A740 series, B&R P84 and P74 series, etc.. Yes, our MH300 series VFD matches with this motor. 
 
4. Is there any protective measures to defend permanent magnet rotor from failure? 
Yes, each permanent magnet rotor passes corrossion resistance, consistency, high temperature demagnetization test, linear demagnetization test, etc. Its demagnetization index is within 2%. But if working environment is serious oxiditive corrosion, kindly advise for higher protection level. 
 
5. Where is this permanent magnet synchronous motor normally used to? 
This permanent magnet synchronous motor is normally used to variable frequency speed situation. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Power Tools, Fans, Pumps, Compressors
Operating Speed: High Speed
Operation Mode: Electric Motor
Magnetic Structure: Permanent Magnet
Function: Driving
Structure: Rotating Pole Type (Armature Fixed)
Customization:
Available

|

brushless ac motor

What is a brushless AC motor, and how does it differ from traditional brushed motors?

A brushless AC motor, also known as a brushless alternating current motor, is a type of electric motor that operates without the use of brushes and commutators found in traditional brushed motors. Instead of using brushes to transfer electrical power to the rotor, brushless AC motors utilize electronic commutation to control the motor’s operation.

The main differences between brushless AC motors and traditional brushed motors are as follows:

  1. Brushes and commutators: In traditional brushed motors, the rotor contains brushes that come into contact with a commutator, which transfers electrical power to the rotor windings. The brushes and commutators introduce friction and wear, requiring regular maintenance and replacement. In contrast, brushless AC motors eliminate the need for brushes and commutators, resulting in reduced friction, lower maintenance requirements, and increased motor lifespan.
  2. Electronic commutation: Brushless AC motors employ electronic commutation through the use of sensors and an electronic controller. The controller monitors the rotor position and switches the current in the motor windings at precise moments to generate the desired rotating magnetic field. This electronic commutation allows for more precise control of the motor’s speed, torque, and direction of rotation.
  3. Efficiency and performance: Brushless AC motors generally offer higher efficiency compared to traditional brushed motors. The elimination of brushes and commutators reduces energy losses, resulting in improved overall motor efficiency. Additionally, brushless AC motors can provide smoother and quieter operation due to their electronic commutation and precise control of the motor’s performance.
  4. Size and weight: Brushless AC motors are often more compact and lightweight compared to traditional brushed motors with similar power ratings. The absence of brushes and commutators allows for a more streamlined motor design, making brushless AC motors suitable for applications with limited space or weight restrictions.
  5. Reliability and lifespan: Brushless AC motors tend to have a longer lifespan and higher reliability due to the absence of brushes that can wear out over time. The elimination of brush-related issues, such as brush sparking and brush dust accumulation, contributes to the improved reliability and durability of brushless AC motors.

Brushless AC motors are widely used in various applications, including industrial automation, robotics, electric vehicles, HVAC systems, and more. Their superior efficiency, precise control, reduced maintenance requirements, and longer lifespan make them a preferred choice in many modern motor-driven systems.

brushless ac motor

Can brushless AC motors be used in both industrial and residential settings?

Yes, brushless AC motors can be used in both industrial and residential settings. The versatility and advantages of brushless AC motors make them suitable for a wide range of applications. Here’s a detailed explanation:

Industrial Applications:

Brushless AC motors are widely used in various industrial applications due to their high efficiency, reliability, and precise control. Some common industrial applications where brushless AC motors are utilized include:

  • Industrial Machinery: Brushless AC motors are often used in industrial machinery such as conveyor systems, pumps, compressors, and fans. Their high torque, variable speed control, and efficient operation make them suitable for driving heavy loads and providing reliable performance in demanding industrial environments.
  • Robotics: Brushless AC motors find extensive use in robotics applications. The precise control capabilities of brushless motors, coupled with their compact size and high power density, make them ideal for powering robotic arms, grippers, and other motion control systems.
  • Automotive: Brushless AC motors are increasingly being employed in electric and hybrid vehicles. They offer high power-to-weight ratios, efficient operation, and regenerative braking capabilities, making them suitable for propulsion systems, power steering, and other automotive applications.
  • Aerospace: Brushless AC motors are used in aerospace applications, including aircraft systems, control surfaces, and landing gear mechanisms. Their reliability, compactness, and high performance make them suitable for the demanding requirements of the aerospace industry.
  • Industrial Automation: Brushless AC motors play a critical role in industrial automation systems. They are used in CNC machines, robotic arms, assembly lines, and other automated processes, providing accurate and reliable motion control.

Residential Applications:

Brushless AC motors are also finding increased use in residential settings, thanks to their energy efficiency, quiet operation, and long lifespan. Some common residential applications where brushless AC motors are utilized include:

  • Appliances: Brushless AC motors are employed in various household appliances such as refrigerators, air conditioners, washing machines, and dishwashers. They offer energy-efficient operation, precise control, and reduced noise levels, enhancing the performance and user experience of these appliances.
  • HVAC Systems: Brushless AC motors are used in heating, ventilation, and air conditioning (HVAC) systems. They provide efficient and reliable operation for fans, blowers, and pumps, contributing to energy savings and optimal indoor comfort.
  • Smart Home Devices: Brushless AC motors are integrated into smart home devices, including motorized window blinds, smart locks, and automated lighting systems. They offer quiet operation, precise positioning, and energy efficiency, enhancing the convenience and functionality of these devices.
  • Power Tools: Brushless AC motors are increasingly used in power tools such as drills, saws, and sanders. They deliver high power output, longer runtime, and longer tool life compared to brushed motors, making them desirable for DIY enthusiasts and professionals alike.

With their versatility, energy efficiency, and reliability, brushless AC motors have become a preferred choice in both industrial and residential settings. They offer numerous benefits, including improved performance, reduced maintenance requirements, and enhanced energy savings, making them suitable for a wide range of applications across various sectors.

brushless ac motor

Can you explain the concept of back electromotive force (BEMF) in brushless AC motors?

Back electromotive force (BEMF) is an important concept in brushless AC motors. It refers to the voltage that is induced in the motor’s windings when the rotor rotates in the magnetic field generated by the stator. BEMF plays a crucial role in the operation and control of brushless AC motors. Here’s a detailed explanation of the concept of BEMF and its significance:

When an electric current flows through the motor’s stator windings, it creates a magnetic field that interacts with the permanent magnets or field windings on the rotor. As the rotor spins, the magnetic field lines cut across the stator windings, inducing a voltage in the windings. This induced voltage opposes the applied voltage and is referred to as the back electromotive force (BEMF).

BEMF is a consequence of Faraday’s law of electromagnetic induction, which states that a changing magnetic field induces an electromotive force in a conductor. In the case of brushless AC motors, the rotating rotor and the fixed stator create a changing magnetic field that induces a voltage in the stator windings.

The magnitude and waveform of the BEMF depend on several factors, including the speed of the motor, the number of winding turns, the strength of the magnetic field, and the design of the motor. At low speeds, the BEMF is relatively low, while at high speeds, the BEMF increases proportionally with the speed of the motor.

The BEMF in brushless AC motors serves several important purposes:

  • Motor Control: BEMF is used as feedback in motor control systems to determine the rotor position and speed. By measuring the BEMF, the motor controller can accurately synchronize the switching of the inverter to energize the stator windings at the correct time, ensuring optimal motor performance.
  • Commutation: BEMF provides information about the position of the rotor relative to the stator windings. This information is crucial for determining when to switch the current flow between different windings to generate the rotating magnetic field necessary for motor operation. By monitoring the BEMF, the motor controller can precisely control the commutation sequence, ensuring smooth and efficient motor operation.
  • Speed Regulation: BEMF is directly related to the speed of the motor. By measuring the BEMF, the motor controller can accurately determine the speed of the motor and adjust the applied voltage or frequency to maintain the desired speed. This speed regulation capability allows brushless AC motors to operate at variable speeds, providing flexibility and energy efficiency in various applications.
  • Overvoltage Protection: BEMF also plays a role in protecting the motor from overvoltage conditions. If the motor is being driven at high speed and the load suddenly decreases or the motor decelerates rapidly, the BEMF can increase significantly. The motor controller can monitor the BEMF and detect this overvoltage condition, triggering protective measures to prevent damage to the motor or other components.

In summary, back electromotive force (BEMF) is the voltage induced in the stator windings of brushless AC motors as a result of the rotor’s rotation in the magnetic field. BEMF is used for motor control, commutation, speed regulation, and overvoltage protection. Understanding and utilizing BEMF is essential for efficient and precise operation of brushless AC motors.

China Standard Customized 45kw -75kw 12000-24000rpm Brushless AC Permanent Magnet High Speed Electric Motor   a/c vacuum pump		China Standard Customized 45kw -75kw 12000-24000rpm Brushless AC Permanent Magnet High Speed Electric Motor   a/c vacuum pump
editor by CX 2024-04-24

China Professional Hot China Products Wholesale High Speed Linear Actuator Brushless Permanent Magnet DC Motor Electric Motor supplier

Product Description

Quiet stable and reliable for long life operation

1.Diameters: 57mm
2.Lengths: 56mm;76mm;96mm
3.Continuous torques: 0.11Nm;0.22Nm;0.32Nm
4.Power: 46W;92W;134W
5.Speeds up to 4000rpm;4000rpm;4000rpm
6.Environmental conditions: -10~+40°C
7.Number of poles/phase:4/3
8.Mangnet material:Bonded NdFeB
9.Insulation class:B
10.Optional: electronic drivers, encoders and gearheads, as well as Hall effect resolver and sensorless feedback
11.We can design the special voltage and shaft and so on
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Medical Equpiments
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Driving
Number of Poles: 4
Structure and Working Principle: Brushless
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

Can brushless motors be used in environments with high temperatures or extreme conditions?

Yes, brushless motors can be designed and used in environments with high temperatures or extreme conditions, provided that they are appropriately engineered and equipped with suitable materials and protective measures. Here’s a detailed explanation of the factors to consider and the measures taken to enable brushless motors to operate in such challenging environments:

1. Thermal Management: High temperatures can have detrimental effects on the performance and lifespan of brushless motors. To mitigate these effects, thermal management techniques are employed. This includes the use of efficient heat sinks, cooling fans, or liquid cooling systems to dissipate heat generated during motor operation. Additionally, the motor’s design may incorporate insulation materials that can withstand high temperatures and prevent heat transfer to sensitive components.

2. High-Temperature Materials: Brushless motors intended for use in high-temperature environments are constructed using materials that can withstand the elevated temperatures. This includes the use of high-temperature-resistant magnets, such as samarium cobalt (SmCo) or neodymium iron boron (NdFeB) magnets, which can maintain their magnetic properties at high temperatures. Similarly, the motor’s components, such as the stator, windings, and insulation materials, are selected or treated to withstand the specific temperature requirements.

3. Sealing and Enclosure: Extreme conditions often involve exposure to dust, moisture, or other contaminants that can adversely affect motor performance. To protect brushless motors in such environments, they are typically equipped with robust sealing and enclosure measures. This may include the use of gaskets, O-rings, or specialized seals to prevent the ingress of dust, water, or corrosive substances. In some cases, motors are housed in IP (Ingress Protection) rated enclosures, providing a higher level of protection against environmental factors.

4. Vibration and Shock Resistance: Some extreme environments may subject the motors to high levels of vibration or mechanical shocks. Brushless motors designed for such conditions are engineered to withstand these external forces. They may incorporate features such as reinforced mounting structures, vibration-damping materials, or shock-absorbing mechanisms to ensure reliable operation and prevent damage to internal components.

5. Environmental Testing and Certification: To ensure the suitability of brushless motors for high-temperature or extreme environments, they often undergo rigorous testing and certification processes. These tests may include temperature cycling, humidity testing, thermal shock testing, vibration testing, and ingress protection testing. Compliance with industry standards and certifications, such as UL (Underwriters Laboratories) or IEC (International Electrotechnical Commission) standards, provides assurance of the motor’s reliability and performance in specific environmental conditions.

It’s important to note that the specific temperature and environmental limits of a brushless motor can vary depending on the design, construction, and intended application. Therefore, when considering the use of brushless motors in high-temperature or extreme conditions, it is essential to consult with motor manufacturers or experts who can provide guidance based on the specific requirements and constraints of the intended application.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

What is a brushless motor, and how does it differ from traditional brushed motors?

A brushless motor is an electric motor that operates without the use of brushes and a commutator, unlike traditional brushed motors. Brushless motors rely on electronic commutation to control the power distribution to the motor’s windings, resulting in improved efficiency, reliability, and performance. Here are the key differences between brushless motors and traditional brushed motors:

1. Construction:

Brushed motors consist of a rotor (armature) and a stator. The rotor contains permanent magnets, and the stator consists of electromagnets. Brushes and a commutator are used to transfer power to the rotor and control the direction of current flow. In contrast, brushless motors have a stationary stator with windings and a rotor that contains permanent magnets. The power is supplied to the stator windings through an external controller that electronically commutates the motor.

2. Commutation:

In brushed motors, commutation is achieved mechanically through the brushes and commutator. The brushes make physical contact with the commutator, which switches the direction of current flow in the rotor windings as the motor rotates. This mechanical commutation causes friction, wear, and electrical arcing, leading to inefficiencies and limited lifespan. Brushless motors, on the other hand, employ electronic commutation. Sensors or Hall effect devices detect the rotor position, and the external controller determines the appropriate timing and sequence of current flow in the stator windings, eliminating the need for brushes and commutation mechanisms.

3. Efficiency:

Brushless motors are generally more efficient than brushed motors. The absence of brushes and commutator reduces friction and electrical losses, resulting in higher efficiency and improved power conversion. Brushed motors experience energy losses due to brush contact resistance and electrical arcing, which can reduce overall efficiency. Brushless motors can achieve efficiency levels of over 90%, while brushed motors typically have efficiencies ranging from 75% to 85%.

4. Maintenance:

Brushless motors require less maintenance compared to brushed motors. The brushes in brushed motors wear over time and need periodic replacement. Additionally, the commutator may require cleaning or resurfacing. In contrast, brushless motors have no brushes or commutator, eliminating the need for brush replacement and commutator maintenance. This makes brushless motors more reliable and reduces downtime and maintenance costs.

5. Lifespan:

The lifespan of brushless motors is generally longer than that of brushed motors. The absence of brushes and commutator reduces wear and electrical arcing, which are common causes of failure in brushed motors. Brushless motors can operate for thousands of hours without requiring major maintenance, while brushed motors typically have a shorter lifespan due to brush and commutator wear.

6. Control and Performance:

Brushless motors offer more precise control and better performance compared to brushed motors. The electronic commutation in brushless motors allows for finer control of the motor’s speed, torque, and direction. The external controller can adjust the motor’s parameters dynamically, enabling smoother operation and better responsiveness. Brushless motors also have higher torque-to-weight ratios, faster acceleration, and lower inertia, making them suitable for applications requiring high-performance and precise motion control.

These differences make brushless motors advantageous in many applications where efficiency, reliability, and precise control are crucial. They are commonly used in industries such as robotics, aerospace, electric vehicles, and industrial automation, where high-performance and long-lasting motors are required.

China Professional Hot China Products Wholesale High Speed Linear Actuator Brushless Permanent Magnet DC Motor Electric Motor   supplier China Professional Hot China Products Wholesale High Speed Linear Actuator Brushless Permanent Magnet DC Motor Electric Motor   supplier
editor by CX 2024-04-19

China manufacturer Low-Speed Permanent Magnet AC Brushless Electric Motor wholesaler

Product Description

Product Description

Low-Speed Permanent Magnet Ac Brushless Electric Motor 

Description

Insulation class

F

Optional parts

Encoder, spiral transformer, PTC, PT1-2012

Standard Efficiency IE1 YE1  (4level)
High Efficiency IE2 YE2  (3level)
Super Efficiency IE3 YE3  (2level)
Super Premium Efficiency IE4 YE4  (1level)

Technical Date for YRKK Series(6KV)

 

 

 

Our Services

 

· Customizing the motors according to customers’ requirements.

· Warranty: 1 year for repairing or replacement of motors, customs duty & freight not included (have maintenance point ).

FAQ

Q: How To Order ?
A: Step 1, please tell us what model and quantity you need;
    Step 2, then we will make a PI for you to confirm the order details;
    Step 3, when we confirmed everything, can arrange the payment;
    Step 4, finally we deliver the goods within the stipulated time.

Q: What is the MOQ?
R: 1 set, accept sample.

Q: When you ship my order
R: Normally container need 15-40days, sample 3-7DAYS

Q: How about the quality guarantee period?
R: One year. We have maintenance point in the world.

Q: Do you have the certificates?
R: Yes, we have passed the CE and CCC certification.

Q: Do you offer ODM & OEM service.
R: Yes, we can custom design for specific application.

Q: When can I get the quotation?
R:We usually quote within 12 hours after we get your inquiry. If you are urgent to get the price, please send the message on trade manager or call us directly.

Q: How can I get a sample to check your quality?
R:After price confirmed, you can require for samples to check quality. If you need the samples, we will charge for the sample cost. But the sample cost can be refundable when your quantity of first order is above the MOQ

Q: What is your main market?
R:Southeast Asia, South America,Middle East.North America,EU After-sales Service 1 year warranty for all kinds of products; If you find any defective accessories first time, we will give you the new parts for free to replace in the next order, as an experienced manufacturer, you can rest assured of the quality and after-sales service.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: High Speed
Number of Stator: Three-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Winding Type
Casing Protection: Explosion-Proof Type
Customization:
Available

|

brushless ac motor

In what applications are brushless AC motors commonly used?

Brushless AC motors find extensive application in various industries and sectors due to their numerous advantages. Here are some common applications where brushless AC motors are commonly used:

  • Industrial Automation: Brushless AC motors are widely employed in industrial automation systems, including conveyor belts, robotic arms, packaging machinery, and CNC machines. Their precise control, high efficiency, and reliability make them suitable for these demanding applications.
  • Electric Vehicles (EVs): Brushless AC motors are a popular choice for electric vehicles, including electric cars, motorcycles, and scooters. They offer high torque, efficient power conversion, and regenerative braking capabilities, contributing to the overall performance and range of electric vehicles.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often use brushless AC motors in fans and blowers. The motors provide energy-efficient operation, precise airflow control, and quieter performance compared to traditional brushed motors.
  • Aerospace and Aviation: Brushless AC motors are employed in various aerospace and aviation applications, such as aircraft actuators, flight control systems, and auxiliary power units. The motors offer lightweight design, high power density, and reliable operation in demanding environments.
  • Medical Equipment: Many medical devices and equipment, including surgical tools, imaging systems, and laboratory equipment, utilize brushless AC motors. The motors provide precise control, low noise, and long life, ensuring the reliability and effectiveness of medical procedures.
  • Home Appliances: Brushless AC motors are increasingly used in home appliances such as refrigerators, washing machines, and dishwashers. They offer energy-efficient operation, reduced noise, and enhanced durability compared to traditional brushed motors.
  • Renewable Energy: Brushless AC motors play a crucial role in renewable energy systems like wind turbines and solar tracking systems. Their high efficiency and precise control contribute to optimizing energy generation and harnessing renewable resources effectively.
  • Electronics and Computer Cooling: Brushless AC motors are utilized in electronics and computer cooling applications, including fans and heatsinks. The motors provide efficient heat dissipation, reliable cooling, and quiet operation to prevent overheating and ensure the optimal performance of electronic components.

These are just a few examples of the many applications where brushless AC motors are commonly used. Their versatility, efficiency, reliability, and precise control make them an ideal choice across various industries and sectors.

brushless ac motor

How does the efficiency of a brushless AC motor compare to other motor types?

The efficiency of a motor refers to its ability to convert electrical power into mechanical power with minimal losses. Brushless AC motors are known for their high efficiency compared to other motor types. Here’s a detailed explanation of how the efficiency of brushless AC motors compares to other motor types:

1. Brushed DC Motors: Brushed DC motors, which use carbon brushes and a commutator, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed DC motors introduce friction and electrical losses, reducing overall efficiency. Additionally, the brush contact can cause sparking and wear over time, further impacting efficiency. Brushless AC motors, which eliminate the brushes and commutator, offer higher efficiency due to reduced friction and electrical losses.

2. Induction Motors: Induction motors are a type of AC motor commonly used in various applications. While induction motors are generally efficient, brushless AC motors can offer even higher efficiency. Brushless AC motors benefit from the absence of rotor windings and the elimination of energy losses associated with rotor resistance in induction motors. Additionally, brushless AC motors can achieve higher power factor and better control, further contributing to their overall efficiency.

3. Brushed AC Motors: Brushed AC motors, which use brushes and a commutator similar to brushed DC motors, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed AC motors introduce friction, wear, and electrical losses, reducing overall efficiency. Brushless AC motors eliminate these components, resulting in higher efficiency and improved performance.

4. Permanent Magnet Synchronous Motors (PMSMs): Brushless AC motors, also known as permanent magnet synchronous motors (PMSMs), are highly efficient compared to other motor types. PMSMs utilize permanent magnets on the rotor, eliminating the need for rotor windings and associated losses. The absence of brushes and commutators, as well as the use of advanced control techniques, contribute to the high efficiency of brushless AC motors. PMSMs are widely used in applications that require high efficiency, such as electric vehicles, industrial automation, and renewable energy systems.

It’s important to note that the efficiency of a motor can also depend on factors such as motor design, size, operating conditions, and control mechanisms. While brushless AC motors generally offer high efficiency, specific motor models and variations may vary in their efficiency performance. It is advisable to refer to the motor manufacturer’s specifications and efficiency data for accurate comparisons and selection of the most suitable motor for a given application.

brushless ac motor

What role does the inverter play in the operation of a brushless AC motor?

The inverter plays a crucial role in the operation of a brushless AC motor. It is responsible for converting the DC power from an external power source into the AC power required to drive the motor. Here’s a detailed explanation of the role of the inverter in the operation of a brushless AC motor:

The inverter serves as the interface between the power supply and the brushless AC motor. It consists of power electronic devices, such as insulated-gate bipolar transistors (IGBTs) or metal-oxide-semiconductor field-effect transistors (MOSFETs), which control the switching of electrical signals to generate the desired AC voltage and frequency for the motor.

1. Power Conversion: The primary function of the inverter is to convert the DC power from the external power source, such as a battery or power grid, into the three-phase AC power required by the brushless AC motor. The inverter achieves this conversion by rapidly switching the DC voltage on its input side to create a series of voltage pulses, which are then filtered and shaped to generate the desired AC waveform.

2. Variable Frequency Control: In addition to converting DC power to AC power, the inverter allows for precise control of the motor’s speed and torque by varying the frequency of the generated AC voltage. By adjusting the switching frequency of the inverter’s power electronic devices, the inverter can change the frequency of the AC voltage supplied to the motor. This variable frequency control enables smooth speed regulation and efficient operation of the brushless AC motor across a wide range of speeds.

3. Motor Synchronization: The inverter synchronizes its output voltage and frequency with the rotor position of the brushless AC motor. This synchronization is crucial for accurate and efficient motor operation. The inverter uses position sensors, such as Hall effect sensors or encoders, to detect the rotor position and adjust the timing of the switching signals accordingly. By maintaining proper synchronization, the inverter ensures that the magnetic fields produced by the motor’s stator windings interact optimally with the rotor’s permanent magnets, resulting in smooth and efficient motor performance.

4. Control and Protection: The inverter includes control circuitry and algorithms to manage the operation of the brushless AC motor. It receives commands or feedback signals from the motor control system or user interface and adjusts the voltage and frequency output accordingly. The inverter also incorporates various protection mechanisms to safeguard the motor and itself from abnormal conditions such as overcurrent, overvoltage, or overheating. These protection features help prevent damage to the motor and ensure safe and reliable operation.

5. Energy Regeneration: In some applications, brushless AC motors can act as generators when decelerating or during braking. The inverter can take advantage of this regenerative capability by converting the electrical energy generated by the motor back into usable power. The inverter can feed this regenerated energy back to the power supply or store it in energy storage devices, such as capacitors or batteries, for later use. This energy regeneration feature improves overall system efficiency and can be particularly beneficial in applications where frequent deceleration or braking occurs.

The inverter is an integral component of the brushless AC motor system, responsible for converting the DC power supply into the appropriate AC power to drive the motor. Its ability to control voltage, frequency, and synchronization ensures precise and efficient motor operation. Proper selection, design, and configuration of the inverter are essential to optimize the performance, reliability, and overall system efficiency of brushless AC motor applications.

China manufacturer Low-Speed Permanent Magnet AC Brushless Electric Motor   wholesaler China manufacturer Low-Speed Permanent Magnet AC Brushless Electric Motor   wholesaler
editor by CX 2024-04-03

China manufacturer High Torque Brushless Motor Permanent Magnet DC/AC Brush Electrical Motor for Coffee Machine/Coffee Maker/Automatic Grinding Machine/Blender Mixer vacuum pump ac

Product Description

Product Description

BLDC Motor is featured with electronically commutation, extremely wide speed range and an outstandingly long life span, and  mainly used in applications that low noise and low vibration is a prime requirement, such as consumer robot, coffee grinder, fan&air purifier, vacuum & blower ,etc.

In such cases, CJC’s inner rotor motors are for your products: Your projects demand a greater cooling effect. You prefer motors to obtain a high acceleration rate and high system sensitivity.

DC395 is most suitable for locomotives, residential Fans, and other high-speed horizontal installation equipment with a quick start, such as blowers, high speed centrifuge, vending machines, Coffee Machine, and other fields.

Please consider the following requirements before requesting customization: motor size, controller, motor ratings, gearbox(if any), or other significant factors. The following parameters for your reference, we could customize motor for your applications.

Parameters:

Rated Voltage 24V Rated Speed 6400RPM±10%
Rated Current 0.4A Motor Weight 350g±5%
No-Load Current ≤0.2A Rated Torque 20mN
No-Load Speed 8000RPM±10% Stall Current 3.2A max

Drawing:

Innovative Product Display

Product Usage

Company Profile

Certifications

Exhibition

FAQ

Q: Can I visit your factory before we place the order?
A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical  answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please 
contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other    shipping way. Please contact us if you need other shipping 
way before shipment.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

What is a brushless AC motor, and how does it differ from traditional brushed motors?

A brushless AC motor, also known as a brushless alternating current motor, is a type of electric motor that operates without the use of brushes and commutators found in traditional brushed motors. Instead of using brushes to transfer electrical power to the rotor, brushless AC motors utilize electronic commutation to control the motor’s operation.

The main differences between brushless AC motors and traditional brushed motors are as follows:

  1. Brushes and commutators: In traditional brushed motors, the rotor contains brushes that come into contact with a commutator, which transfers electrical power to the rotor windings. The brushes and commutators introduce friction and wear, requiring regular maintenance and replacement. In contrast, brushless AC motors eliminate the need for brushes and commutators, resulting in reduced friction, lower maintenance requirements, and increased motor lifespan.
  2. Electronic commutation: Brushless AC motors employ electronic commutation through the use of sensors and an electronic controller. The controller monitors the rotor position and switches the current in the motor windings at precise moments to generate the desired rotating magnetic field. This electronic commutation allows for more precise control of the motor’s speed, torque, and direction of rotation.
  3. Efficiency and performance: Brushless AC motors generally offer higher efficiency compared to traditional brushed motors. The elimination of brushes and commutators reduces energy losses, resulting in improved overall motor efficiency. Additionally, brushless AC motors can provide smoother and quieter operation due to their electronic commutation and precise control of the motor’s performance.
  4. Size and weight: Brushless AC motors are often more compact and lightweight compared to traditional brushed motors with similar power ratings. The absence of brushes and commutators allows for a more streamlined motor design, making brushless AC motors suitable for applications with limited space or weight restrictions.
  5. Reliability and lifespan: Brushless AC motors tend to have a longer lifespan and higher reliability due to the absence of brushes that can wear out over time. The elimination of brush-related issues, such as brush sparking and brush dust accumulation, contributes to the improved reliability and durability of brushless AC motors.

Brushless AC motors are widely used in various applications, including industrial automation, robotics, electric vehicles, HVAC systems, and more. Their superior efficiency, precise control, reduced maintenance requirements, and longer lifespan make them a preferred choice in many modern motor-driven systems.

brushless ac motor

What are the maintenance requirements for brushless AC motors?

Brushless AC motors are known for their relatively low maintenance requirements compared to traditional brushed motors. However, they still require some maintenance to ensure optimal performance and longevity. Here’s a detailed explanation of the maintenance requirements for brushless AC motors:

1. Cleanliness: Keeping the motor clean is essential for its proper functioning. Regularly inspect the motor for any dust, dirt, or debris accumulation. Use compressed air or a soft brush to gently remove any foreign particles that may have collected on the motor’s surface or cooling vents. Cleanliness helps prevent overheating and ensures efficient operation.

2. Ventilation: Brushless AC motors generate heat during operation, and proper ventilation is crucial for dissipating this heat. Ensure that the cooling vents or fans associated with the motor are not obstructed. Clear any obstructions that may impede the airflow around the motor. Adequate ventilation helps prevent overheating and extends the motor’s lifespan.

3. Bearing Lubrication: Brushless AC motors typically incorporate bearings to support the rotating shaft. Some motors may have sealed or maintenance-free bearings, while others may require periodic lubrication. Consult the motor manufacturer’s guidelines or specifications to determine the lubrication requirements. Proper lubrication minimizes friction and wear, ensuring smooth operation and prolonging bearing life.

4. Inspect and Tighten Connections: Periodically inspect the electrical connections of the motor, including the power cables, terminals, and control wiring. Loose or corroded connections can lead to voltage drops, excessive heat, and electrical failures. Ensure that all connections are secure and tight. If any signs of corrosion are present, clean the connections and apply an appropriate anti-corrosion treatment.

5. Check Insulation: Insulation plays a critical role in maintaining the integrity of the motor’s electrical components. Inspect the motor’s insulation regularly for any signs of damage, such as cracks, wear, or deterioration. Damaged insulation can lead to short circuits and motor failures. If any insulation issues are detected, consult a professional technician or the motor manufacturer for proper repair or replacement.

6. Monitor Vibration and Noise: Unusual vibration or excessive noise during motor operation can indicate underlying issues. Regularly monitor the motor for any abnormal vibrations or noise levels. Excessive vibration can lead to premature component failure, while unusual noise may indicate bearing wear or misalignment. If significant vibration or noise is observed, it is recommended to consult a professional technician to diagnose and address the problem.

7. Periodic Maintenance: Depending on the specific motor and its operating conditions, periodic maintenance tasks may be required, such as bearing replacement, rotor balancing, or inspection of internal components. Consult the motor manufacturer’s guidelines or recommendations for the recommended maintenance intervals and procedures specific to your motor.

It’s important to note that the specific maintenance requirements for brushless AC motors may vary depending on factors such as motor design, operating environment, and usage conditions. Consulting the motor manufacturer’s guidelines and recommendations is crucial to ensure proper maintenance practices and maximize the motor’s performance and lifespan.

brushless ac motor

Are there limitations to the size or capacity of brushless AC motors?

Yes, there are limitations to the size or capacity of brushless AC motors. While brushless AC motors offer several advantages over other motor types, such as higher efficiency, better speed control, and longer lifespan, they do have certain limitations that need to be considered. Here’s a detailed explanation of these limitations:

1. Physical Size: Brushless AC motors tend to be larger in size compared to brushed motors of similar power ratings. This is primarily due to the additional components required for the motor’s operation, such as the rotor position sensors and the motor controller. As a result, there may be practical limitations on the size of brushless AC motors that can be used in certain applications where space is limited or where compact motor designs are required.

2. Power Density: Brushless AC motors generally have lower power density compared to some other motor types, such as brushed DC motors or certain types of high-performance motors. Power density refers to the amount of power that can be delivered per unit volume or weight of the motor. This limitation can impact applications where high power-to-size or power-to-weight ratios are critical, such as in aerospace or automotive applications.

3. Cost: Brushless AC motors can be more expensive compared to other motor types, especially for smaller power ratings. The additional components and complex control systems required for brushless AC motor operation contribute to higher manufacturing costs. This cost limitation may make brushless AC motors less economically viable for certain applications, particularly those with low power requirements or strict budget constraints.

4. High-Speed Operation: Brushless AC motors may face challenges when operating at extremely high speeds. The centrifugal forces acting on the rotor components can increase significantly at high speeds, leading to increased mechanical stress and potential issues with rotor balancing. Specialized designs and materials may be required to mitigate these challenges and ensure safe and reliable high-speed operation.

5. Complex Control Systems: Brushless AC motors require sophisticated control systems, such as motor controllers or drives, to operate effectively. These control systems must accurately synchronize the switching of the inverter and the rotor position to achieve optimal motor performance. The design, implementation, and maintenance of these control systems can be complex and may require specialized knowledge and expertise.

Despite these limitations, brushless AC motors are widely used in various applications, ranging from industrial machinery and robotics to electric vehicles and renewable energy systems. Continuous advancements in motor technology and control systems are addressing many of these limitations, allowing brushless AC motors to be applied in a broader range of applications and power capacities.

It’s crucial to consider the specific requirements and constraints of the intended application when selecting a motor type. Consulting with motor experts or engineers can provide valuable insights into the suitability and limitations of brushless AC motors for a given application.

China manufacturer High Torque Brushless Motor Permanent Magnet DC/AC Brush Electrical Motor for Coffee Machine/Coffee Maker/Automatic Grinding Machine/Blender Mixer   vacuum pump acChina manufacturer High Torque Brushless Motor Permanent Magnet DC/AC Brush Electrical Motor for Coffee Machine/Coffee Maker/Automatic Grinding Machine/Blender Mixer   vacuum pump ac
editor by CX 2024-03-27

China wholesaler High 42 Brake Stepper Motor Permanent Magnet AC Micro Motor 42b-06 24V Brushless Servo Motor with Best Sales

Product Description

SHN Motors

1.Features
1). High efficiency
2). Long operating life
3). Low noise
4). Good temperature rise
5). Good balance
6). The most available design for the optimized running.

2.Related Specifications

Type Static Press Vol./Fre Output Input Current Speed Noise
  Pa V/Hz W W A R/Min dB(A)
YDK-10-4 12 220V/50Hz 10 34 0.15 820 ≤37
YDK-12-4 30 220V/50Hz 12 41 0.19 900 ≤40
YDK-18-4 50 220V/50Hz 18 48 0.22 1130 ≤42
YSK-12-4 12 220V/50Hz 12 48 0.22 810 ≤39
YSK-18-4 30 220V/50Hz 18 56 0.26 950 ≤42
YSK-28-4 50 220V/50Hz 28 68 0.31 1120 ≤44
YSK-18-4 12 220V/50Hz 18 55 0.25 840 ≤41
YSK-30-4 30 220V/50Hz 30 76 0.35 1030 ≤44
YSK-40-4 50 220V/50Hz 40 81 0.37 1160 ≤46
YSK-32-4 12 220V/50Hz 32 77 0.35 980 ≤43
YSK-34-4 30 220V/50Hz 34 87 0.40 1050 ≤46
YSK-54-4 50 220V/50Hz 54 95 0.43 1230 ≤47

Type Vol.Tre Static Press Output Input Current Speed Airflow Noise
  V/Hz Pa W W A R/Min M3/H dB(A)
YSK-150-4 220V/50Hz 10-75 150 330 1.55 1300 700-1500 ≤47
YSK-200-4 220V/50Hz 10-85 200 465 2.15 1200 700-1800 ≤49
YSK-250-4 220V/50Hz 20-85 250 580 2.7 1320 1100-2200 ≤49
YSK-300-4 220V/50Hz 20-100 300 630 2.95 1100 1200-2700 ≤49
YSK-400-4 220V/50Hz 20-100 400 730 3.4 1100 1500-3200 ≤50
YSK-450-4 220V/50Hz 30-100 450 1030 4.8 1200 1800-3700 ≤52
YSK-550-4 220V/50Hz 0-150 550 810 4.8 1350 1200-3000 ≤59

Type Vol Tre Output Current Speed
  V Hz W A R/Min
YS-350-10 380-415V 50Hz 350 1.25 545
YS-560-10 380-415V 50Hz 560 2.2 530
YS-580-8 380-415V 50Hz 580 3.1 710
YS-1250-6 380-415V 50Hz 1250 4 930
YS-1500-6 380-415V 50Hz 1500 4.5 930
YS-600-8/12 380-415V 50Hz 450 2 700/390
YS-900-6/10 380-415V 50Hz 800 3 780/480
YS-250-6 380-415V 50Hz 250 0.9 930
YS-370-6 380-415V 50Hz 370 1.3 930
YS-550-6 380-415V 50Hz 550 1.4 930
YS-750-6 380-415V 50Hz 750 2.5 930
YS-120-8 380-415V 50Hz 120 1 710
YS-370-8 380-415V 50Hz 370 1.5 710

3.Outlines/Drawings

4.Production Flow

5.Main Products

6.Applications

7.Package and Shipping

1.FedEX / DHL / UPS / TNT for samples,Door to door service;
2.By sea for batch goods;
3.Customs specifying freight forwarders or negotiable shipping methods;
4.Delivery Time:20-25 Days for samples;30-35 Days for batch goods;
5.Payment Terms:T/T,L/C at sight,D/P etc.

8.FAQ
Q1. When can I get the quotation?
We usually quote within 24 hours after we get your inquiry.
If you are urgent to get the price, please send the message on  and  or call us directly.

Q2. How can I get a sample to check your quality?
After price confirmed, you can requiry for samples to check quality.
If you need the samples, we will charge for the sample cost.
But the sample cost can be refundable when your quantity of first order is above the MOQ

Q3. Can you do OEM for us?
Yes, the product packing can be designed as you want.

Q4. How about MOQ?
1 pcs for carton box.

Q5. What is your main market?
Eastern Europe, Southeast Asia, South America.
 
Please feel  free to contact us if you have any question.

 

Application: Universal
Speed: Variable Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: Customized
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

What is a brushless AC motor, and how does it differ from traditional brushed motors?

A brushless AC motor, also known as a brushless alternating current motor, is a type of electric motor that operates without the use of brushes and commutators found in traditional brushed motors. Instead of using brushes to transfer electrical power to the rotor, brushless AC motors utilize electronic commutation to control the motor’s operation.

The main differences between brushless AC motors and traditional brushed motors are as follows:

  1. Brushes and commutators: In traditional brushed motors, the rotor contains brushes that come into contact with a commutator, which transfers electrical power to the rotor windings. The brushes and commutators introduce friction and wear, requiring regular maintenance and replacement. In contrast, brushless AC motors eliminate the need for brushes and commutators, resulting in reduced friction, lower maintenance requirements, and increased motor lifespan.
  2. Electronic commutation: Brushless AC motors employ electronic commutation through the use of sensors and an electronic controller. The controller monitors the rotor position and switches the current in the motor windings at precise moments to generate the desired rotating magnetic field. This electronic commutation allows for more precise control of the motor’s speed, torque, and direction of rotation.
  3. Efficiency and performance: Brushless AC motors generally offer higher efficiency compared to traditional brushed motors. The elimination of brushes and commutators reduces energy losses, resulting in improved overall motor efficiency. Additionally, brushless AC motors can provide smoother and quieter operation due to their electronic commutation and precise control of the motor’s performance.
  4. Size and weight: Brushless AC motors are often more compact and lightweight compared to traditional brushed motors with similar power ratings. The absence of brushes and commutators allows for a more streamlined motor design, making brushless AC motors suitable for applications with limited space or weight restrictions.
  5. Reliability and lifespan: Brushless AC motors tend to have a longer lifespan and higher reliability due to the absence of brushes that can wear out over time. The elimination of brush-related issues, such as brush sparking and brush dust accumulation, contributes to the improved reliability and durability of brushless AC motors.

Brushless AC motors are widely used in various applications, including industrial automation, robotics, electric vehicles, HVAC systems, and more. Their superior efficiency, precise control, reduced maintenance requirements, and longer lifespan make them a preferred choice in many modern motor-driven systems.

brushless ac motor

Are there different configurations or types of brushless AC motors available?

Yes, there are different configurations and types of brushless AC motors available, each designed for specific applications and operating requirements. Here’s a detailed explanation of some common configurations and types of brushless AC motors:

1. Outrunner Motors: Outrunner motors, also known as external rotor motors, have a stationary core with windings and a rotating outer shell that houses the magnets. In this configuration, the rotor surrounds the stator. Outrunner motors are known for their high torque output, making them suitable for applications that require high starting torque and low-speed operation, such as robotics, electric vehicles, and industrial machinery.

2. Inrunner Motors: Inrunner motors have a stationary outer shell with windings and a rotating inner core that contains the magnets. Unlike outrunner motors, the stator surrounds the rotor in this configuration. Inrunner motors are typically smaller and lighter than outrunner motors and are commonly used in applications that require high RPMs and compact size, such as drones, model aircraft, and small appliances.

3. Slotless Motors: Slotless motors feature a core without any iron slots, resulting in a smooth cylindrical shape. These motors offer several advantages, including reduced cogging (torque ripple), higher efficiency, and lower inductance. Slotless motors are commonly used in applications that require precise control and smooth operation, such as robotics, medical devices, and precision equipment.

4. Inner Rotor/Outer Stator Motors: In this configuration, the rotor is located inside the stator, and the stator surrounds the rotor. This design allows for easy heat dissipation and efficient cooling, making these motors suitable for high-power applications that require good thermal management, such as industrial machinery, electric vehicles, and HVAC systems.

5. Direct Drive Motors: Direct drive motors, also known as torque motors, eliminate the need for mechanical transmission components, such as gears or belts, by directly coupling the load to the motor. This configuration provides high torque, improved efficiency, and reduced maintenance. Direct drive motors are commonly used in applications that require precise motion control, such as CNC machines, robotics, and semiconductor manufacturing equipment.

6. Modular Motors: Modular brushless AC motors consist of separate rotor and stator modules that can be easily assembled or disassembled. This modular design offers flexibility in terms of motor size, power output, and customization options. Modular motors find applications in various industries, including automotive, aerospace, and industrial automation.

These are just a few examples of the different configurations and types of brushless AC motors available. Each configuration has its own advantages and is suitable for specific applications based on factors such as torque requirements, speed range, size constraints, efficiency, and control precision. The choice of motor configuration depends on the specific needs of the application and the desired performance characteristics.

brushless ac motor

How do brushless AC motors contribute to the efficiency of HVAC systems?

Brushless AC motors play a significant role in improving the efficiency of HVAC (heating, ventilation, and air conditioning) systems. These motors offer several advantages over traditional motor technologies, such as brushed motors or older induction motors. Here’s a detailed explanation of how brushless AC motors contribute to the efficiency of HVAC systems:

  • Higher Energy Efficiency: Brushless AC motors are known for their higher energy efficiency compared to brushed motors or older motor technologies. They achieve this efficiency through various mechanisms:
    • Reduced Energy Losses: Brushless AC motors eliminate the need for brushes and commutators, which are sources of friction, wear, and electrical losses in brushed motors. By eliminating these components, brushless AC motors reduce energy losses and improve overall efficiency.
    • Better Motor Control: Brushless AC motors utilize advanced control techniques, such as sensor feedback and precise voltage and frequency control, to optimize motor performance. This control allows for smoother operation, improved speed regulation, and reduced energy consumption.
    • Variable Speed Operation: Brushless AC motors can operate at variable speeds, allowing them to adjust their power output to match the required load. By running the motor at the most efficient speed for a given operating condition, energy consumption is minimized, resulting in higher overall system efficiency.
  • Improved System Performance: The efficiency of an HVAC system is not solely dependent on the motor itself but also on how the motor interacts with the rest of the system. Brushless AC motors contribute to improved system performance in the following ways:
    • Enhanced Control and Integration: Brushless AC motors can be easily integrated into advanced control systems, allowing for precise regulation of motor speed, airflow, and temperature. This integration enables more efficient operation of the entire HVAC system, optimizing energy usage and improving comfort.
    • Variable Air Volume (VAV) Systems: Brushless AC motors are well-suited for VAV systems commonly used in HVAC applications. VAV systems adjust the airflow based on the cooling or heating demands of different zones. Brushless AC motors can modulate their speed and power output to match the varying airflow requirements, resulting in energy savings and improved comfort.
    • Improved Fan Efficiency: HVAC systems often rely on fans to circulate air. Brushless AC motors, with their higher energy efficiency and precise speed control, can drive fans more efficiently, reducing the energy consumed by the fan and improving overall system efficiency.
  • Longer Lifespan and Durability: Brushless AC motors are generally more reliable and durable compared to brushed motors. They have fewer moving parts, eliminating the wear and tear associated with brushes and commutators. This increased durability reduces maintenance needs and extends the lifespan of the motor, contributing to long-term efficiency gains in HVAC systems.
  • Reduced Noise and Vibration: Brushless AC motors operate with reduced noise and vibration levels compared to some other motor types. This characteristic enhances the overall comfort of HVAC systems and reduces the need for additional soundproofing measures, contributing to a more efficient and pleasant environment.

The use of brushless AC motors in HVAC systems offers substantial benefits in terms of energy efficiency, system performance, durability, and comfort. Integrating these motors into HVAC designs can lead to significant energy savings, reduced operating costs, and improved environmental sustainability.

China wholesaler High 42 Brake Stepper Motor Permanent Magnet AC Micro Motor 42b-06 24V Brushless Servo Motor   with Best Sales China wholesaler High 42 Brake Stepper Motor Permanent Magnet AC Micro Motor 42b-06 24V Brushless Servo Motor   with Best Sales
editor by CX 2023-11-17

China Standard High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor vacuum pump connector

Product Description

Product Description

Feature: 
A. High power range from 5W to 20KW
B. Rich stock and fast shipping time in 10 working days
C. Easy for speed & direction adjustment
D. 16mm to 220mm size range with low noisy
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
J. Permanent magnet brushless dc motor
K.High-performance and stable matching driver and controller
High Speed 12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor with Controller

Style# Rated power(W) Rated voltag(V) Rated speed(r/min) Rated torque(N.m)  Peak torque(N.m) Rated current(A)  L=Motor length(mm)
D5BLD450-48A-30S 450W  DC48V  3000r/min  1.43 4.29 11.7A 90mm

Other Specification form:

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Flange Size

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 14 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 85/Piece
1 Piece(Min.Order)

|

Order Sample

brushless dc motor
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What role do electronic speed controllers (ESCs) play in brushless motor systems?

Electronic Speed Controllers (ESCs) play a crucial role in brushless motor systems as they are responsible for controlling the speed, direction, and performance of the motor. Here’s a detailed explanation of the role of electronic speed controllers in brushless motor systems:

1. Power Regulation: One of the primary functions of an ESC is to regulate the power supplied to the brushless motor. The ESC acts as an intermediary between the power source (such as a battery) and the motor, ensuring that the motor receives the appropriate voltage and current to operate at the desired speed and torque levels. The ESC monitors the input power and adjusts it based on the control signals it receives.

2. Commutation: Brushless motors require precise commutation, which involves switching the current flow in the motor windings to maintain proper magnetic field alignment and generate rotation. The ESC is responsible for coordinating the commutation process by electronically timing and sequencing the current pulses sent to the motor windings. This ensures smooth and efficient motor operation, allowing the motor to generate the desired torque and rotational speed.

3. Speed Control: ESCs enable precise speed control in brushless motor systems. By adjusting the timing and duration of the current pulses sent to the motor windings, the ESC can regulate the motor’s rotational speed. This speed control functionality is essential in various applications, such as drones, RC vehicles, robotics, and industrial automation, where precise speed adjustments are required to achieve the desired performance and functionality.

4. Direction Control: In addition to speed control, ESCs also provide direction control for brushless motors. By reversing the sequence of the current pulses sent to the motor windings, the ESC can change the direction of rotation of the motor. This allows for bi-directional operation, enabling the motor to perform tasks that require both clockwise and counterclockwise rotation.

5. Protection and Safety Features: ESCs often incorporate various protection and safety features to safeguard the motor and the overall system. These features may include overcurrent protection, overtemperature protection, low-voltage cutoff, and motor lock-up detection. By monitoring various parameters and conditions, the ESC can detect potential issues or abnormalities and take appropriate actions to prevent damage to the motor, ESC, or other components.

6. Interface and Control: ESCs provide an interface for external control and communication. They are typically equipped with input connectors to receive control signals from a receiver or a microcontroller, allowing for remote control or integration into a larger control system. Additionally, ESCs may offer advanced control features such as programmability, adjustable acceleration profiles, and compatibility with various control protocols (e.g., PWM, PPM, or CAN bus).

7. Efficiency and Performance Optimization: ESCs contribute to the overall efficiency and performance optimization of brushless motor systems. Through advanced control algorithms and power electronics, ESCs can minimize power losses, maximize energy conversion efficiency, and optimize the motor’s performance characteristics. This results in improved system efficiency, longer battery life, and enhanced motor performance.

In summary, electronic speed controllers (ESCs) play a vital role in brushless motor systems by regulating power, coordinating commutation, enabling speed and direction control, providing protection and safety features, offering control interfaces, and optimizing system efficiency and performance. The ESC acts as the central control unit that bridges the gap between the power source, the motor, and the external control system, ensuring smooth and reliable operation of brushless motors across a wide range of applications.

brushless motor

How does the control system of a brushless motor contribute to precise speed regulation?

The control system of a brushless motor plays a crucial role in achieving precise speed regulation, allowing for accurate and stable motor operation. By utilizing advanced control algorithms and feedback mechanisms, the control system effectively manages the power delivery and motor performance, resulting in precise speed control. Here’s a detailed explanation of how the control system of a brushless motor contributes to precise speed regulation:

  • Electronic Commutation: Brushless motors employ electronic commutation, which replaces traditional brushes and commutators with solid-state electronic components. The control system utilizes sensors, such as Hall effect sensors or encoders, to accurately detect the rotor position. By knowing the precise rotor position, the control system can switch the power supply to the motor windings at the optimal timing, ensuring smooth rotation and precise speed control.
  • Pulse Width Modulation (PWM): The control system utilizes pulse width modulation to regulate the power delivered to the motor windings. By adjusting the width of the electrical pulses, the control system can control the average voltage applied to the motor, thereby regulating the motor speed. Precise timing and modulation of the PWM signals allow for fine-grained control over the motor speed, enabling precise speed regulation with minimal speed fluctuations.
  • Feedback Control: The control system incorporates feedback control mechanisms to monitor and regulate the motor speed. Feedback is typically obtained from position sensors, such as encoders or Hall effect sensors, which provide real-time information about the rotor position. This feedback is compared to the desired speed reference, and any deviations are used to adjust the motor control signals. By continuously comparing the actual speed with the desired speed, the control system makes corrective adjustments to maintain precise speed regulation.
  • Proportional-Integral-Derivative (PID) Control: Many brushless motor control systems employ PID control algorithms to achieve precise speed regulation. PID control utilizes a combination of proportional, integral, and derivative control actions to minimize speed errors and maintain stable operation. The proportional control component responds to the current speed error, the integral control component integrates past speed errors to eliminate steady-state errors, and the derivative control component anticipates speed changes to improve response time. The PID control algorithm continuously adjusts the motor control signals based on the speed error, contributing to precise speed regulation.
  • Closed-Loop Control: The control system of a brushless motor typically operates in a closed-loop configuration, where the feedback from position sensors is used to regulate the motor speed. Closed-loop control ensures that the motor speed accurately follows the desired reference speed, even in the presence of external disturbances or varying load conditions. By continuously comparing the actual speed with the desired speed and making real-time adjustments, closed-loop control provides precise speed regulation and improves the motor’s ability to maintain a constant speed under changing operating conditions.
  • Advanced Control Techniques: The control system may incorporate advanced control techniques, such as field-oriented control (FOC) or vector control, to achieve even higher precision in speed regulation. These techniques involve transforming the motor currents and voltages into a rotating reference frame, allowing for independent control of the magnetizing and torque-producing components. By decoupling these components and controlling them separately, advanced control techniques enable precise control of the motor speed and improve overall performance.

In summary, the control system of a brushless motor contributes to precise speed regulation through electronic commutation, pulse width modulation, feedback control, PID control algorithms, closed-loop control, and advanced control techniques. By utilizing these control strategies, the control system ensures accurate and stable motor operation, allowing for precise speed control and minimizing speed deviations in various applications.

brushless motor

In which industries are brushless motors commonly employed, and what are their key roles?

Brushless motors find applications in a wide range of industries, thanks to their numerous advantages and capabilities. Here are some of the industries where brushless motors are commonly employed and their key roles:

1. Automotive Industry:

In the automotive industry, brushless motors are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They play a crucial role in providing propulsion for these vehicles, driving the wheels and ensuring efficient power delivery. Brushless motors offer high efficiency, precise control, and fast acceleration, making them ideal for electric drivetrains. Additionally, they are employed in various automotive subsystems such as electric power steering, HVAC systems, cooling fans, and braking systems.

2. Aerospace and Aviation:

Brushless motors have significant applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations. Their high power-to-weight ratio, compact size, and high-speed capabilities make them well-suited for aerospace requirements.

3. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They power robotic arms, joints, and grippers, enabling accurate and controlled movements. Brushless motors offer high torque, precise position control, and rapid acceleration, making them vital for industrial robotics, collaborative robots (cobots), and automated manufacturing processes. Their compact size and efficiency also contribute to the design and performance of robotic systems.

4. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes. Their ability to handle high loads, operate at high speeds, and offer precise control makes them valuable in demanding industrial environments.

5. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of the industries where brushless motors are commonly employed. Their efficiency, reliability, precise control, compact size, and high-performance characteristics make them versatile and valuable in many other sectors as well. As technology continues to advance, brushless motors are likely to find new applications and play increasingly important roles in various industries.

China Standard High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor   vacuum pump connector	China Standard High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor   vacuum pump connector
editor by CX 2023-11-16

China manufacturer Permanent Magnet household appliances 32-40W electric DC planetary gear motor motor armature

Product Description

Permanent Magnet household appliances 32-40W electric dc planetary gear motor

Main Features
1.OEM/ODM 42mm planetary gearbox plups7 series dc motor and 42mm brushless motor
2.Small size dc gear motor with low speed and big torque
3.42mm gear motor provide 10.0Nm torque and more reliable
4.Suitable to small diameter, low noise and big torque application
5.Dc Gear motors can match encoder,11ppr
6.Reduction ratio:4,14,19,27,51,71,100,139,189,264,369,516,720
 

Motor model no. Rated voltage No-load speed No-load current Rated speed Rated torque Rated current Output power Stall torque Stall current
VDC r/min A r/min g.cm A W g.cm A
TRS-775PM-2460 24 6000 0.3 4500 900 2.3 40 3600 7.2
TRS-775PM-0648 6 4800 1.2 3600 900 8.7 33 3600 32
TRS-775PM-1246 12 4600 0.6 3470 900 4.4 32 3600 16

Gear motor technical data : GMP42-775PM-2460-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1400 295 110 58 42 32 23 16 11.5 8.3
Rated speed  rpm 1125 235 88 45 32 24 18 14 10.5 8
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Gear motor technical data : GMP42-775PM-0648-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1150 240 92 46 35 25 18 13 9.3 6.6
Rated speed  rpm 900 190 71 36 26 19 14 11 8.5 6.0
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Gear motor technical data : GMP42-775PM-1246-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1100 220 86 44 32 24 17 12 8.7 6.3
Rated speed  rpm 870 185 69 35 25 19 14 10.5 8.2 5.7
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Related product

Product Application

Other Applications:
Business Machines: ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines.
Food and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Home Entertainment and Gaming: Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys.
Home Technologies: Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines.
Lawn and Garden: Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Personal Care: Hair Cutting, Hair Care, Massagers.
Power Tools: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Camera and Optical: Video, Cameras, Projectors.


Packing & Delivery
Packaging: single carton packing, 100 pieces per box.
Shipping time:
DHL: 3-5 working days ;
UPS: 5-7 working days;
TNT: 5-7 working days;
FedEx: 7-9 working days;
EMS: 12-15 working days;
China Post: Depends on ship to which country;
Sea: Depends on ship to which country
Our company

TT Motor (HK) Industrial Co., Ltd has been specializing in micro motors, gear motors and their respective parts since 2000.
Our products are widely used in entertainment systems, automobiles, home and industrial appliances and tools and many others. Our products are dependable and long-lasting, and backed by years of experience. We export 98% of our output worldwide. 
By leveraging our hard-won reputation for honesty, dependability and quality, TT Motor aims to continue as a pioneer in the sales overseas by seeking global partners. If your company is an end-user of micro-motors, a distributor or an agent, please contact us. We look forward to being CZPT to work together with you in the near future.
Certifications

FAQ

Q: How to order?
A: send us inquiry → receive our quotation → negotiate details → confirm the sample → sign contract/deposit → mass production → cargo ready → balance/delivery → further cooperation.
Q: How about Sample order?
A: Sample is available for you. please contact us for details. Our website:ttmotor
Q: Which shipping way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Post,Sea are available.The other shipping ways are also available, please contact us if you need ship by the other shipping way. 
Q: How long is the deliver?
A: Devliver time depends on the quantity you order. usually it takes 15-25 working days.
Q: My package has missing products. What can I do?
A: Please contact our support team and we will confirm your order with the package contents.We apologize for any inconveniences. 
Q: How to confirm the payment?
A: We accept payment by T/T, PayPal, the other payment ways also could be accepted,Please contact us before you pay by the other payment ways. Also 30-50% deposit is available, the balance money should be paid before shipping.

Application: Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Explosion-Proof Type
Number of Poles: 4
Customization:
Available

|

Customized Request

Motor

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China manufacturer Permanent Magnet household appliances 32-40W electric DC planetary gear motor   motor armatureChina manufacturer Permanent Magnet household appliances 32-40W electric DC planetary gear motor   motor armature
editor by CX 2023-04-28

China best Permanent Magnet household appliances 32-40W electric DC planetary gear motor with Good quality

Product Description

Permanent Magnet household appliances 32-40W electric dc planetary gear motor

Main Features
1.OEM/ODM 42mm planetary gearbox plups7 series dc motor and 42mm brushless motor
2.Small size dc gear motor with low speed and big torque
3.42mm gear motor provide 10.0Nm torque and more reliable
4.Suitable to small diameter, low noise and big torque application
5.Dc Gear motors can match encoder,11ppr
6.Reduction ratio:4,14,19,27,51,71,100,139,189,264,369,516,720
 

Motor model no. Rated voltage No-load speed No-load current Rated speed Rated torque Rated current Output power Stall torque Stall current
VDC r/min A r/min g.cm A W g.cm A
TRS-775PM-2460 24 6000 0.3 4500 900 2.3 40 3600 7.2
TRS-775PM-0648 6 4800 1.2 3600 900 8.7 33 3600 32
TRS-775PM-1246 12 4600 0.6 3470 900 4.4 32 3600 16

Gear motor technical data : GMP42-775PM-2460-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1400 295 110 58 42 32 23 16 11.5 8.3
Rated speed  rpm 1125 235 88 45 32 24 18 14 10.5 8
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Gear motor technical data : GMP42-775PM-0648-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1150 240 92 46 35 25 18 13 9.3 6.6
Rated speed  rpm 900 190 71 36 26 19 14 11 8.5 6.0
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Gear motor technical data : GMP42-775PM-1246-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1100 220 86 44 32 24 17 12 8.7 6.3
Rated speed  rpm 870 185 69 35 25 19 14 10.5 8.2 5.7
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Related product

Product Application

Other Applications:
Business Machines: ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines.
Food and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Home Entertainment and Gaming: Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys.
Home Technologies: Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines.
Lawn and Garden: Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Personal Care: Hair Cutting, Hair Care, Massagers.
Power Tools: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Camera and Optical: Video, Cameras, Projectors.


Packing & Delivery
Packaging: single carton packing, 100 pieces per box.
Shipping time:
DHL: 3-5 working days ;
UPS: 5-7 working days;
TNT: 5-7 working days;
FedEx: 7-9 working days;
EMS: 12-15 working days;
China Post: Depends on ship to which country;
Sea: Depends on ship to which country
Our company

TT Motor (HK) Industrial Co., Ltd has been specializing in micro motors, gear motors and their respective parts since 2000.
Our products are widely used in entertainment systems, automobiles, home and industrial appliances and tools and many others. Our products are dependable and long-lasting, and backed by years of experience. We export 98% of our output worldwide. 
By leveraging our hard-won reputation for honesty, dependability and quality, TT Motor aims to continue as a pioneer in the sales overseas by seeking global partners. If your company is an end-user of micro-motors, a distributor or an agent, please contact us. We look forward to being CZPT to work together with you in the near future.
Certifications

FAQ

Q: How to order?
A: send us inquiry → receive our quotation → negotiate details → confirm the sample → sign contract/deposit → mass production → cargo ready → balance/delivery → further cooperation.
Q: How about Sample order?
A: Sample is available for you. please contact us for details. Our website:ttmotor
Q: Which shipping way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Post,Sea are available.The other shipping ways are also available, please contact us if you need ship by the other shipping way. 
Q: How long is the deliver?
A: Devliver time depends on the quantity you order. usually it takes 15-25 working days.
Q: My package has missing products. What can I do?
A: Please contact our support team and we will confirm your order with the package contents.We apologize for any inconveniences. 
Q: How to confirm the payment?
A: We accept payment by T/T, PayPal, the other payment ways also could be accepted,Please contact us before you pay by the other payment ways. Also 30-50% deposit is available, the balance money should be paid before shipping.

Application: Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Explosion-Proof Type
Number of Poles: 4
Customization:
Available

|

Customized Request

Motor

The Benefits of Using a Gear Motor

A gear motor works on the principle of conservation of angular momentum. As the smaller gear covers more RPM and the larger gear produces more torque, the ratio between the two is greater than one. Similarly, a multiple gear motor follows the principle of energy conservation, with the direction of rotation always opposite to the one that is adjacent to it. It’s easy to understand the concept behind gear motors and the various types available. Read on to learn about the different types of gears and their applications.

Electric motor

The choice of an electric motor for gear motor is largely dependent on the application. There are various motor and gearhead combinations available, and some are more efficient than others. However, it is critical to understand the application requirements and select a motor that meets these needs. In this article, we’ll examine some of the benefits of using a gear motor. The pros and cons of each type are briefly discussed. You can buy new gear motors at competitive prices, but they aren’t the most reliable or durable option for your application.
To determine which motor is best for your application, you’ll need to consider the load and speed requirements. A gear motor’s efficiency (e) can be calculated by taking the input and output values and calculating their relation. On the graph below, the input (T) and output (P) values are represented as dashed lines. The input (I) value is represented as the torque applied to the motor shaft. The output (P) is the amount of mechanical energy converted. A DC gear motor is 70% efficient at 3.75 lb-in / 2,100 rpm.
In addition to the worm gear motor, you can also choose a compact DC worm gear motor with a variable gear ratio from 7.5 to 80. It has a range of options and can be custom-made for your specific application. The 3-phase AC gear motor, on the other hand, works at a rated power of one hp and torque of 1.143.2 kg-m. The output voltage is typically 220V.
Another important factor is the output shaft orientation. There are two main orientations for gearmotors: in-line and offset. In-line output shafts are most ideal for applications with high torque and short reduction ratios. If you want to avoid backlash, choose a right angle output shaft. An offset shaft can cause the output shaft to become excessively hot. If the output shaft is angled at a certain angle, it may be too large or too small.

Gear reducer

A gear reducer is a special kind of speed reducing motor, usually used in large machinery, such as compressors. These reducers have no cooling fan and are not designed to handle heavy loads. Different purposes require different service factors. For instance, a machine that requires frequent fast accelerations and occasional load spikes needs a gear reducer with a high service factor. A gear reducer that’s designed for long production shifts should be larger than a machine that uses it for short periods of time.
A gear reducer can reduce the speed of a motor by a factor of two. The reduction ratio changes the rotation speed of the receiving member. This change in speed is often required to solve problems of inertia mismatch. The torque density of a gear reducer is measured in newton meters and will depend on the motor used. The first criterion is the configuration of the input and output shafts. A gear ratio of 2:1, for example, means that the output speed has been cut in half.
Bevel gear reducers are a good option if the input and output shafts are perpendicular. This type is very robust and is perfect for situations where the angle between two axes is small. However, bevel gear reducers are expensive and require constant maintenance. They are usually used in heavy-duty conveyors and farm equipment. The correct choice of gear reducer for gear motor is crucial for the efficiency and reliability of the mechanism. To get the best gear reducer for your application, talk to a qualified manufacturer today.
Choosing a gear reducer for a gear motor can be tricky. The wrong one can ruin an entire machine, so it’s important to know the specifics. You must know the torque and speed requirements and choose a motor with the appropriate ratio. A gear reducer should also be compatible with the motor it’s intended for. In some cases, a smaller motor with a gear reducer will work better than a larger one.
Motor

Motor shaft

Proper alignment of the motor shaft can greatly improve the performance and life span of rotating devices. The proper alignment of motors and driven instruments enhances the transfer of energy from the motor to the instrument. Incorrect alignment leads to additional noise and vibration. It may also lead to premature failure of couplings and bearings. Misalignment also results in increased shaft and coupling temperatures. Hence, proper alignment is critical to improve the efficiency of the driven instrument.
When choosing the correct type of gear train for your motor, you need to consider its energy efficiency and the torque it can handle. A helical geared motor is more efficient for high output torque applications. Depending on the required speed and torque, you can choose between an in-line and a parallel helical geared motor. Both types of gears have their advantages and disadvantages. Spur gears are widespread. They are toothed and run parallel to the motor shaft.
A planetary gear motor can also have a linear output shaft. A stepping motor should not operate at too high current to prevent demagnetization, which will lead to step loss or torque drop. Ensure that the motor and gearbox output shafts are protected from external impacts. If the motor and gearbox are not protected against bumps, they may cause thread defects. Make sure that the motor shafts and rotors are protected from external impacts.
When choosing a metal for your gear motor’s motor shaft, you should consider the cost of hot-rolled bar stock. Its outer layers are more difficult to machine. This type of material contains residual stresses and other problems that make it difficult to machine. For these applications, you should choose a high-strength steel with hard outer layers. This type of steel is cheaper, but it also has size considerations. It’s best to test each material first to determine which one suits your needs.
In addition to reducing the speed of your device, a geared motor also minimizes the torque generated by your machine. It can be used with both AC and DC power. A high-quality gear motor is vital for stirring mechanisms and conveyor belts. However, you should choose a geared motor that uses high-grade gears and provides maximum efficiency. There are many types of planetary gear motors and gears on the market, and it’s important to choose the right one.
Motor

First stage gears

The first stage gears of a gear motor are the most important components of the entire device. The motor’s power transmission is 90% efficient, but there are many factors that can affect its performance. The gear ratios used should be high enough to handle the load, but not too high that they are limiting the motor’s speed. A gear motor should also have a healthy safety factor, and the lubricant must be sufficient to overcome any of these factors.
The transmission torque of the gear changes with its speed. The transmission torque at the input side of the gear decreases, transferring a small torque to the output side. The number of teeth and the pitch circle diameters can be used to calculate the torque. The first stage gears of gear motors can be categorized as spur gears, helical gears, or worm gears. These three types of gears have different torque capacities.
The first stage helical gear is the most important part of a gear motor. Its function is to transfer rotation from one gear to the other. Its output is the gearhead. The second stage gears are connected by a carrier. They work in tandem with the first stage gear to provide the output of the gearhead. Moreover, the first stage carrier rotates in the same direction as the input pinion.
Another important component is the output torque of the gearmotor. When choosing a gearmotor, consider the starting torque, running torque, output speed, overhung and shock loads, duty cycles, and more. It is crucial to choose a gearmotor with the right ratio for the application. By choosing the proper gearmotor, you will get maximum performance with minimal operating costs and increase plant productivity. For more information on first stage gears, check out our blog.
The first stage of a gear motor is composed of a set of fixed and rotating sprockets. The first stage of these gears acts as a drive gear. Its rotational mass is a limiting factor for torque. The second stage consists of a rotating shaft. This shaft rotates in the direction of the torque axis. It is also the limiting force for the motor’s torque.

China best Permanent Magnet household appliances 32-40W electric DC planetary gear motor   with Good qualityChina best Permanent Magnet household appliances 32-40W electric DC planetary gear motor   with Good quality
editor by CX 2023-04-26

China High Precision MY1016Z 24V36V 250W350W Permanent Magnet DC Brush Gear Motor for Electric Vehicle motor driver

Warranty: 3 months
Design Number: MY1016Z3
Use: BOAT, Auto, Electric Bicycle, Enthusiast, Home Equipment
Variety: Equipment MOTOR
Torque: .8-1N.m
Design: Long term Magnet
Commutation: Brush
Safeguard Feature: Drip-proof
Pace(RPM): 3000RPM
Steady Existing(A): ≤1A
Efficiency: IE one
Item Name: Brushed DC Motor
Software: Home Applicance
Motor variety: Dc Brush Gear Motor
Rated Voltage: DC36V 48V
Shaft diameter: 6mm,8mm,10mm, 12mm
Substance: Metallic
Shaft kind: Left or proper
Enter voltage: 12v/24v/36v/48vdc
Size: Customers’ Need
Coloration: Black
Packaging Specifics: 1.Within :Plastic luggage with Chemical Desiccant For Equipment Housing 2.Center :Specific Carton packaging 3. Outside :Picket Box
Port: ZheJiang , HangZhou, HangZhou

Item Overview Large Precision MY1016Z 24V/36V 250W/350W Permanent Magnet DC Brush Equipment Motor for Electric powered Vehicle

Module:MY106Z2MY106Z3
Rated Energy250w250w350w350w
Rated Voltage24vdc36vdc24vdc36vdc
Rated Velocity 3000RPM3000RPM3000RPM3000RPM
No Load Speed 3850RPM3850RPM3850RPM3850RPM
Rated Present≤13.4A≤ Aluminum rod machining very clear anodized Custom made stainless steel bushing CNC sleeve housing fabrication 9.0A≤18.7A≤12.5A
No Load Present≤2.2A≤2.0A≤2.2A≤2.0A
Rated Torque0.8N.m0.8N.m1.11N.m1.11N.m
Effectiveness≥78%≥78%≥78%≥78%
Equipment Rationone:9.78
Proportions Model: MY1016Z Kinds operate: Wheelchairs Higher Quality Black Galvanized Established Screw And One Split Shaft Collar electrical bike amusement apparatus agricultural machinery Doing work theory: The hub is mounted with tongue and groove claws to achieve frictionProduct introduction: Features modest volume, minimal pace, large output torque, lower noise, high trustworthiness, straightforward upkeep, and so forth. Specification Software This variety of MY1016Z motor is commonly employed in wheelchair, tricycle, harmony auto, Chinese Supplier New Fashion Engraved Dart Shafts Joint Propeller Shaft Functioning Of Propeller Shaft electric powered bike,boat and other electrical equioment. Why choose us Packing & Supply Outer packing: Normal export carton with needed shipping and delivery marksInner packing: Watertight packing with shock absorbing EPE and cardboard surroundedAs per the consumers requirementsShipment: TNT, DHL, UPS, FedEx, By Sea are available. The other transport methods are also obtainable. Strict product packaging guarantees that the motors is not ruined for the duration of transportation. Organization Profile FAQ 1. Q: What is actually sort of your organization.A: We are company.two. Q: what should I provide when I choose gearbox/velocity reducer?A: 1) load condition2) velocity of rotation or pace ratio(blend with mix velocity reducer can get additional lower out putting rotational speed)3) perform circumstance(temperature, humidity,corrosion and so forth.)4) space of set upthree. Q: How lengthy dose it consider to end my purchase?A: It is dependent on your quantity. four. Q: How can i know the procedure of my order?A: Thorough photograph of the production approach will be sent to you to validate ahead of delivery. Consummation QC program helps make it possible to provide you reputable quality5. Q: When is the greatest time to speak to you?A: Any time,7 days, HanBuild stepper push motor 4-axis Package 1.8A 52N.CM 17HS8401 USB energy controller MACH3 + A4988 driver nema17 stepper motor 24 several hours continuously on obligation.

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China High Precision MY1016Z 24V36V 250W350W Permanent Magnet DC Brush Gear Motor for Electric Vehicle     motor driver	China High Precision MY1016Z 24V36V 250W350W Permanent Magnet DC Brush Gear Motor for Electric Vehicle     motor driver
editor by czh 2023-02-19