Tag Archives: motor 250w

China wholesaler High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor wholesaler

Product Description

Product Description

Feature: 
A. High power range from 5W to 20KW
B. Rich stock and fast shipping time in 10 working days
C. Easy for speed & direction adjustment
D. 16mm to 220mm size range with low noisy
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
J. Permanent magnet brushless dc motor
K.High-performance and stable matching driver and controller
High Speed 12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor with Controller

Style# Rated power(W) Rated voltag(V) Rated speed(r/min) Rated torque(N.m)  Peak torque(N.m) Rated current(A)  L=Motor length(mm)
D5BLD450-48A-30S 450W  DC48V  3000r/min  1.43 4.29 11.7A 90mm

Other Specification form:

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Flange Size

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 14 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 85/Piece
1 Piece(Min.Order)

|

Order Sample

brushless dc motor
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What role do electronic speed controllers (ESCs) play in brushless motor systems?

Electronic Speed Controllers (ESCs) play a crucial role in brushless motor systems as they are responsible for controlling the speed, direction, and performance of the motor. Here’s a detailed explanation of the role of electronic speed controllers in brushless motor systems:

1. Power Regulation: One of the primary functions of an ESC is to regulate the power supplied to the brushless motor. The ESC acts as an intermediary between the power source (such as a battery) and the motor, ensuring that the motor receives the appropriate voltage and current to operate at the desired speed and torque levels. The ESC monitors the input power and adjusts it based on the control signals it receives.

2. Commutation: Brushless motors require precise commutation, which involves switching the current flow in the motor windings to maintain proper magnetic field alignment and generate rotation. The ESC is responsible for coordinating the commutation process by electronically timing and sequencing the current pulses sent to the motor windings. This ensures smooth and efficient motor operation, allowing the motor to generate the desired torque and rotational speed.

3. Speed Control: ESCs enable precise speed control in brushless motor systems. By adjusting the timing and duration of the current pulses sent to the motor windings, the ESC can regulate the motor’s rotational speed. This speed control functionality is essential in various applications, such as drones, RC vehicles, robotics, and industrial automation, where precise speed adjustments are required to achieve the desired performance and functionality.

4. Direction Control: In addition to speed control, ESCs also provide direction control for brushless motors. By reversing the sequence of the current pulses sent to the motor windings, the ESC can change the direction of rotation of the motor. This allows for bi-directional operation, enabling the motor to perform tasks that require both clockwise and counterclockwise rotation.

5. Protection and Safety Features: ESCs often incorporate various protection and safety features to safeguard the motor and the overall system. These features may include overcurrent protection, overtemperature protection, low-voltage cutoff, and motor lock-up detection. By monitoring various parameters and conditions, the ESC can detect potential issues or abnormalities and take appropriate actions to prevent damage to the motor, ESC, or other components.

6. Interface and Control: ESCs provide an interface for external control and communication. They are typically equipped with input connectors to receive control signals from a receiver or a microcontroller, allowing for remote control or integration into a larger control system. Additionally, ESCs may offer advanced control features such as programmability, adjustable acceleration profiles, and compatibility with various control protocols (e.g., PWM, PPM, or CAN bus).

7. Efficiency and Performance Optimization: ESCs contribute to the overall efficiency and performance optimization of brushless motor systems. Through advanced control algorithms and power electronics, ESCs can minimize power losses, maximize energy conversion efficiency, and optimize the motor’s performance characteristics. This results in improved system efficiency, longer battery life, and enhanced motor performance.

In summary, electronic speed controllers (ESCs) play a vital role in brushless motor systems by regulating power, coordinating commutation, enabling speed and direction control, providing protection and safety features, offering control interfaces, and optimizing system efficiency and performance. The ESC acts as the central control unit that bridges the gap between the power source, the motor, and the external control system, ensuring smooth and reliable operation of brushless motors across a wide range of applications.

brushless motor

How does the absence of brushes impact the maintenance requirements of brushless motors?

The absence of brushes in brushless motors has a significant impact on their maintenance requirements. Here’s how the absence of brushes affects the maintenance of brushless motors:

1. Reduced Wear and Tear:

One of the primary advantages of brushless motors is that they do not have brushes that make physical contact with the commutator. In brushed motors, the brushes wear down over time, leading to brush replacement or repair. The absence of brushes in brushless motors eliminates this wear and tear, resulting in reduced maintenance needs. Brushless motors can operate for longer periods without the need for brush replacement or maintenance related to brush wear.

2. Decreased Risk of Brush Failure:

Brushes in brushed motors are subject to wear, heat, and carbon dust accumulation, which can lead to brush failure or arcing. Brush failure can cause motor performance issues, increased electrical noise, and even motor damage. Brushless motors, on the other hand, do not have brushes that can fail. The absence of brushes reduces the risk of brush-related failures, minimizing the need for maintenance and repair associated with brush replacement or troubleshooting brush-related issues.

3. Improved Reliability and Durability:

The elimination of brushes in brushless motors improves their overall reliability and durability. Without brushes, there is no physical contact or friction that can cause wear, heat generation, or electrical resistance. This results in a more robust motor design with fewer components prone to failure. Brushless motors are known for their long service life and high reliability, requiring minimal maintenance to keep them operational.

4. Simplified Maintenance Procedures:

Brushless motors typically require less maintenance compared to brushed motors. The absence of brushes simplifies maintenance procedures since there is no need to inspect, clean, or replace brushes. Routine maintenance for brushless motors usually involves checking the motor’s connections, ensuring proper cooling, and verifying the integrity of the electronic components and wiring. These maintenance tasks are generally less frequent and less labor-intensive compared to maintaining brushed motors.

5. Potential Cost Savings:

The reduced maintenance requirements of brushless motors can result in cost savings over their lifetime. With fewer maintenance tasks and a longer service life, the overall maintenance and repair costs associated with brushless motors are typically lower compared to brushed motors. The reduced need for brush replacement, brush inspections, and related troubleshooting can contribute to cost savings and improved operational efficiency.

In summary, the absence of brushes in brushless motors significantly impacts their maintenance requirements. The elimination of brushes reduces wear and tear, decreases the risk of brush failure, improves reliability and durability, simplifies maintenance procedures, and can potentially lead to cost savings. These advantages make brushless motors an attractive choice in applications where low maintenance and long service life are essential, such as in electric vehicles, industrial automation, and other systems that require reliable and efficient motion control.

brushless motor

What are the primary advantages of using brushless motors in various applications?

Brushless motors offer several advantages that make them preferred choices in various applications. Here are the primary advantages of using brushless motors:

1. High Efficiency:

Brushless motors are known for their high efficiency. The absence of brushes and commutators reduces friction and electrical losses, resulting in improved power conversion and energy efficiency. This efficiency translates into lower power consumption, reduced heat generation, and longer battery life in battery-powered applications. High efficiency makes brushless motors suitable for applications where energy efficiency is crucial, such as electric vehicles, renewable energy systems, and battery-operated devices.

2. Increased Reliability:

Brushless motors offer increased reliability compared to brushed motors. The lack of brushes and commutators eliminates common points of failure in brushed motors. Brushes can wear out and require periodic replacement, while commutators can experience electrical arcing and wear. By removing these components, brushless motors have longer lifespans, reduced maintenance requirements, and higher overall reliability. This advantage is particularly important in critical applications where downtime and maintenance costs must be minimized.

3. Precise Speed and Position Control:

Brushless motors provide precise speed and position control, making them suitable for applications that require accurate motion control. The electronic commutation in brushless motors allows for precise monitoring and adjustment of motor parameters, such as speed, torque, and direction. This level of control enables smooth and precise movements, making brushless motors ideal for robotics, CNC machines, automation systems, and other applications that demand precise positioning and motion control.

4. Compact Size and High Power Density:

Brushless motors have a compact design and high power density, making them suitable for applications where space is limited. The absence of brushes and commutators allows for a more streamlined motor design, reducing the overall size and weight of the motor. This compact size makes brushless motors ideal for applications with size constraints, such as drones, portable devices, and small appliances. Despite their compact size, brushless motors can deliver high power output, making them capable of driving demanding applications.

5. Reduced Electromagnetic Interference (EMI):

Brushless motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless motors produces smoother and more controlled current waveforms, resulting in reduced EMI. This advantage is particularly important in applications where EMI can interfere with sensitive electronics or cause electromagnetic compatibility (EMC) issues. Brushless motors are commonly used in medical equipment, telecommunications, and audio/video equipment, where minimizing EMI is critical.

6. Higher Speed and Acceleration Capability:

Brushless motors offer higher speed and acceleration capabilities compared to brushed motors. The absence of brushes reduces friction and allows brushless motors to achieve higher rotational speeds. Additionally, the electronic commutation enables faster switching and control, resulting in faster acceleration and deceleration. These characteristics make brushless motors suitable for applications that require rapid movements, high-speed operation, and quick response times, such as robotics, industrial automation, and electric vehicles.

These advantages make brushless motors a preferred choice in a wide range of applications, including robotics, electric vehicles, aerospace, industrial automation, medical equipment, consumer electronics, and more. Their high efficiency, reliability, precise control, compact size, reduced EMI, and high-speed capabilities contribute to improved performance and enable innovative designs in various industries.

China wholesaler High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor   wholesaler China wholesaler High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor   wholesaler
editor by CX 2024-05-08

China Good quality 57bl High Torque 12V 24V 36V 48V 60V Electrical Brushless DC Motor 30W 50W 75W 100W 200W 250W BLDC Geared Motor with Controller Brake Encoder Integrated vacuum pump brakes

Product Description

Below are only some typical models.

For more information or a customed motor, Pls contact us.

Option for :
customized shaft, performance, voltage, mounting, lead wires..
Option for:
Electric Brake, Planetary Gearbox, Worm Gearbox, Optical Encoder Integrated

Size 57mm brushless dc motors

Rated Voltage : 24 Volt
Option for 12v 24v 36v 48v 60v 

Bearing High quality ball bearing
Poles 4-poles 8-poles
Protection class IP40 IP54 option
Insulation class class: F

Standard Version

High Torque Version

57mm Brushless DC Motor with Planetary Gear Box
 

ABOVE MODELS ARE ONLY TYPICAL MODELS

WE MAKE CUSTOMED VOLTAGE, WINDING, SHAFT, MOUNTING,

AND MOTOR ADDERS FOR ENCODER, GEARBOX, BRAKE…ETC

CONTROLLER INTEGRATED

PLANET VERSION, CONTROLLER BRAKE ENCODER INTEGRATED

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Shunt
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 8
Customization:
Available

|

brushless motor

Can you explain the role of magnetic fields in the operation of brushless motors?

In brushless motors, magnetic fields play a crucial role in the motor’s operation. These magnetic fields are generated by permanent magnets and electromagnets within the motor. Here’s a detailed explanation of the role of magnetic fields in brushless motors:

1. Permanent Magnets:

Brushless motors typically incorporate permanent magnets, often made of rare-earth materials like neodymium, in the rotor or the outer shell (stator) of the motor. These magnets create a steady magnetic field that interacts with the electromagnets in the motor’s stator. The permanent magnets establish a fixed magnetic flux pattern and provide a source of magnetic energy in the motor. The strength and arrangement of the permanent magnets determine the motor’s torque and power characteristics.

2. Electromagnets:

The stator of a brushless motor contains electromagnets, which are typically made of copper wire coils wound around iron cores. When an electric current flows through these coils, they generate magnetic fields. The interaction between the magnetic fields of the permanent magnets and the electromagnets is what enables the motor’s operation. By controlling the current flowing through the stator coils, the magnetic fields can be manipulated to produce rotational motion in the motor.

3. Magnetic Field Alignment:

The primary goal of the magnetic fields in a brushless motor is to achieve proper alignment between the rotor and the stator. As the magnetic fields interact, they create forces that cause the rotor to move in a rotational manner. The stator’s electromagnets generate magnetic fields that attract or repel the permanent magnets on the rotor, causing the rotor to rotate. By sequentially energizing different electromagnets in the stator, the magnetic field alignment is continuously adjusted, resulting in continuous rotation of the rotor.

4. Commutation:

In order to maintain the rotational motion, brushless motors employ a technique called commutation. Commutation involves switching the current flow to different stator coils at specific times during the rotation. This switching is coordinated with the position of the rotor to ensure smooth and continuous rotation. By changing the magnetic field orientation in the stator, the rotor is constantly pulled or pushed to follow the rotating magnetic field, allowing the motor to generate torque and maintain its rotational motion.

5. Sensor Feedback:

In some brushless motors, position sensors, such as Hall effect sensors or encoders, are used to provide feedback on the rotor’s position. These sensors detect the magnetic field changes as the rotor rotates and provide information to the motor controller. The motor controller uses this feedback to accurately determine the timing and sequence of stator coil energization, ensuring precise commutation and optimal motor performance.

6. Efficiency and Control:

The proper alignment and control of magnetic fields in brushless motors contribute to their efficiency and control characteristics. By using permanent magnets and carefully designed stator electromagnets, brushless motors can achieve high power density, reduced energy losses, and improved overall efficiency. Additionally, the ability to control the magnetic fields through precise commutation and feedback allows for precise speed control, torque control, and position control in various applications.

In summary, magnetic fields play a fundamental role in the operation of brushless motors. The interaction between permanent magnets and electromagnets, along with proper commutation and control, enables the conversion of electrical energy into rotational motion. Understanding and manipulating magnetic fields are essential for optimizing the performance, efficiency, and control of brushless motors in a wide range of applications.

brushless motor

Can brushless motors be used in both low-power and high-power applications?

Yes, brushless motors can be used in both low-power and high-power applications. The versatility and scalability of brushless motor technology allow them to be employed across a wide range of power requirements. Here’s how brushless motors are utilized in both low-power and high-power applications:

1. Low-Power Applications:

In low-power applications, brushless motors offer several advantages over other motor types. They are capable of delivering efficient and precise motion control even at low power levels. Some examples of low-power applications where brushless motors are commonly used include:

  • Consumer Electronics: Brushless motors are employed in devices such as drones, camera gimbals, computer cooling fans, and electric toothbrushes. These applications require compact and lightweight motors with low power consumption and precise control.
  • Home Appliances: Brushless motors find applications in various home appliances, including refrigerators, washing machines, air conditioners, and fans. They provide energy-efficient operation and contribute to the overall performance and longevity of these appliances.
  • Office Equipment: Brushless motors are used in printers, scanners, copiers, and other office equipment. They offer quiet operation, precise movement, and low power consumption, making them suitable for these applications.
  • Automotive Systems: Brushless motors are increasingly utilized in automotive systems, including HVAC blowers, power windows, seat adjustment mechanisms, and electric power steering. They provide efficient and reliable operation while minimizing power consumption.

2. High-Power Applications:

Brushless motors are also capable of meeting the demands of high-power applications, offering excellent performance and reliability. They are suitable for applications that require high torque, rapid acceleration, and precise control at elevated power levels. Some examples of high-power applications where brushless motors are commonly used include:

  • Electric Vehicles (EVs): Brushless motors are extensively employed in electric vehicles for propulsion and drivetrain systems. They offer high torque output, efficient power conversion, and precise control, enabling EVs to achieve high performance and extended range.
  • Aerospace and Aviation: Brushless motors find applications in aircraft systems such as flight control surfaces, landing gear actuation, and environmental control systems. These applications require high-power motors with reliable and precise motion control capabilities.
  • Industrial Automation: Brushless motors are utilized in industrial machinery and automation systems, including CNC machines, robotics, and conveyor systems. They provide high torque density, fast response times, and accurate positioning, enabling efficient and precise control in demanding industrial environments.
  • Marine and Propulsion Systems: Brushless motors are used in marine applications, such as electric propulsion systems for boats and ships. They offer high power output, durability, and resistance to harsh environmental conditions.

These examples demonstrate that brushless motors are versatile and can be applied across a wide spectrum of power requirements. Whether in low-power or high-power applications, brushless motors provide advantages such as high efficiency, precise control, low maintenance, and improved performance. The specific power requirements and performance criteria of an application will determine the selection and customization of brushless motors to ensure optimal performance and reliability.

brushless motor

What is a brushless motor, and how does it differ from traditional brushed motors?

A brushless motor is an electric motor that operates without the use of brushes and a commutator, unlike traditional brushed motors. Brushless motors rely on electronic commutation to control the power distribution to the motor’s windings, resulting in improved efficiency, reliability, and performance. Here are the key differences between brushless motors and traditional brushed motors:

1. Construction:

Brushed motors consist of a rotor (armature) and a stator. The rotor contains permanent magnets, and the stator consists of electromagnets. Brushes and a commutator are used to transfer power to the rotor and control the direction of current flow. In contrast, brushless motors have a stationary stator with windings and a rotor that contains permanent magnets. The power is supplied to the stator windings through an external controller that electronically commutates the motor.

2. Commutation:

In brushed motors, commutation is achieved mechanically through the brushes and commutator. The brushes make physical contact with the commutator, which switches the direction of current flow in the rotor windings as the motor rotates. This mechanical commutation causes friction, wear, and electrical arcing, leading to inefficiencies and limited lifespan. Brushless motors, on the other hand, employ electronic commutation. Sensors or Hall effect devices detect the rotor position, and the external controller determines the appropriate timing and sequence of current flow in the stator windings, eliminating the need for brushes and commutation mechanisms.

3. Efficiency:

Brushless motors are generally more efficient than brushed motors. The absence of brushes and commutator reduces friction and electrical losses, resulting in higher efficiency and improved power conversion. Brushed motors experience energy losses due to brush contact resistance and electrical arcing, which can reduce overall efficiency. Brushless motors can achieve efficiency levels of over 90%, while brushed motors typically have efficiencies ranging from 75% to 85%.

4. Maintenance:

Brushless motors require less maintenance compared to brushed motors. The brushes in brushed motors wear over time and need periodic replacement. Additionally, the commutator may require cleaning or resurfacing. In contrast, brushless motors have no brushes or commutator, eliminating the need for brush replacement and commutator maintenance. This makes brushless motors more reliable and reduces downtime and maintenance costs.

5. Lifespan:

The lifespan of brushless motors is generally longer than that of brushed motors. The absence of brushes and commutator reduces wear and electrical arcing, which are common causes of failure in brushed motors. Brushless motors can operate for thousands of hours without requiring major maintenance, while brushed motors typically have a shorter lifespan due to brush and commutator wear.

6. Control and Performance:

Brushless motors offer more precise control and better performance compared to brushed motors. The electronic commutation in brushless motors allows for finer control of the motor’s speed, torque, and direction. The external controller can adjust the motor’s parameters dynamically, enabling smoother operation and better responsiveness. Brushless motors also have higher torque-to-weight ratios, faster acceleration, and lower inertia, making them suitable for applications requiring high-performance and precise motion control.

These differences make brushless motors advantageous in many applications where efficiency, reliability, and precise control are crucial. They are commonly used in industries such as robotics, aerospace, electric vehicles, and industrial automation, where high-performance and long-lasting motors are required.

China Good quality 57bl High Torque 12V 24V 36V 48V 60V Electrical Brushless DC Motor 30W 50W 75W 100W 200W 250W BLDC Geared Motor with Controller Brake Encoder Integrated   vacuum pump brakesChina Good quality 57bl High Torque 12V 24V 36V 48V 60V Electrical Brushless DC Motor 30W 50W 75W 100W 200W 250W BLDC Geared Motor with Controller Brake Encoder Integrated   vacuum pump brakes
editor by CX 2024-04-03

China manufacturer 57bl High Torque 12V 24V 36V 48V 60V Electrical Brushless DC Motor 30W 50W 75W 100W 200W 250W BLDC Geared Motor with Controller Brake Encoder Integrated manufacturer

Product Description

Below are only some typical models.

For more information or a customed motor, Pls contact us.

Option for :
customized shaft, performance, voltage, mounting, lead wires..
Option for:
Electric Brake, Planetary Gearbox, Worm Gearbox, Optical Encoder Integrated

Size 57mm brushless dc motors

Rated Voltage : 24 Volt
Option for 12v 24v 36v 48v 60v 

Bearing High quality ball bearing
Poles 4-poles 8-poles
Protection class IP40 IP54 option
Insulation class class: F

Standard Version

High Torque Version

57mm Brushless DC Motor with Planetary Gear Box
 

ABOVE MODELS ARE ONLY TYPICAL MODELS

WE MAKE CUSTOMED VOLTAGE, WINDING, SHAFT, MOUNTING,

AND MOTOR ADDERS FOR ENCODER, GEARBOX, BRAKE…ETC

CONTROLLER INTEGRATED

PLANET VERSION, CONTROLLER BRAKE ENCODER INTEGRATED

 

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Shunt
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 8
Customization:
Available

|

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

Can brushless motors be used in both low-power and high-power applications?

Yes, brushless motors can be used in both low-power and high-power applications. The versatility and scalability of brushless motor technology allow them to be employed across a wide range of power requirements. Here’s how brushless motors are utilized in both low-power and high-power applications:

1. Low-Power Applications:

In low-power applications, brushless motors offer several advantages over other motor types. They are capable of delivering efficient and precise motion control even at low power levels. Some examples of low-power applications where brushless motors are commonly used include:

  • Consumer Electronics: Brushless motors are employed in devices such as drones, camera gimbals, computer cooling fans, and electric toothbrushes. These applications require compact and lightweight motors with low power consumption and precise control.
  • Home Appliances: Brushless motors find applications in various home appliances, including refrigerators, washing machines, air conditioners, and fans. They provide energy-efficient operation and contribute to the overall performance and longevity of these appliances.
  • Office Equipment: Brushless motors are used in printers, scanners, copiers, and other office equipment. They offer quiet operation, precise movement, and low power consumption, making them suitable for these applications.
  • Automotive Systems: Brushless motors are increasingly utilized in automotive systems, including HVAC blowers, power windows, seat adjustment mechanisms, and electric power steering. They provide efficient and reliable operation while minimizing power consumption.

2. High-Power Applications:

Brushless motors are also capable of meeting the demands of high-power applications, offering excellent performance and reliability. They are suitable for applications that require high torque, rapid acceleration, and precise control at elevated power levels. Some examples of high-power applications where brushless motors are commonly used include:

  • Electric Vehicles (EVs): Brushless motors are extensively employed in electric vehicles for propulsion and drivetrain systems. They offer high torque output, efficient power conversion, and precise control, enabling EVs to achieve high performance and extended range.
  • Aerospace and Aviation: Brushless motors find applications in aircraft systems such as flight control surfaces, landing gear actuation, and environmental control systems. These applications require high-power motors with reliable and precise motion control capabilities.
  • Industrial Automation: Brushless motors are utilized in industrial machinery and automation systems, including CNC machines, robotics, and conveyor systems. They provide high torque density, fast response times, and accurate positioning, enabling efficient and precise control in demanding industrial environments.
  • Marine and Propulsion Systems: Brushless motors are used in marine applications, such as electric propulsion systems for boats and ships. They offer high power output, durability, and resistance to harsh environmental conditions.

These examples demonstrate that brushless motors are versatile and can be applied across a wide spectrum of power requirements. Whether in low-power or high-power applications, brushless motors provide advantages such as high efficiency, precise control, low maintenance, and improved performance. The specific power requirements and performance criteria of an application will determine the selection and customization of brushless motors to ensure optimal performance and reliability.

brushless motor

What is a brushless motor, and how does it differ from traditional brushed motors?

A brushless motor is an electric motor that operates without the use of brushes and a commutator, unlike traditional brushed motors. Brushless motors rely on electronic commutation to control the power distribution to the motor’s windings, resulting in improved efficiency, reliability, and performance. Here are the key differences between brushless motors and traditional brushed motors:

1. Construction:

Brushed motors consist of a rotor (armature) and a stator. The rotor contains permanent magnets, and the stator consists of electromagnets. Brushes and a commutator are used to transfer power to the rotor and control the direction of current flow. In contrast, brushless motors have a stationary stator with windings and a rotor that contains permanent magnets. The power is supplied to the stator windings through an external controller that electronically commutates the motor.

2. Commutation:

In brushed motors, commutation is achieved mechanically through the brushes and commutator. The brushes make physical contact with the commutator, which switches the direction of current flow in the rotor windings as the motor rotates. This mechanical commutation causes friction, wear, and electrical arcing, leading to inefficiencies and limited lifespan. Brushless motors, on the other hand, employ electronic commutation. Sensors or Hall effect devices detect the rotor position, and the external controller determines the appropriate timing and sequence of current flow in the stator windings, eliminating the need for brushes and commutation mechanisms.

3. Efficiency:

Brushless motors are generally more efficient than brushed motors. The absence of brushes and commutator reduces friction and electrical losses, resulting in higher efficiency and improved power conversion. Brushed motors experience energy losses due to brush contact resistance and electrical arcing, which can reduce overall efficiency. Brushless motors can achieve efficiency levels of over 90%, while brushed motors typically have efficiencies ranging from 75% to 85%.

4. Maintenance:

Brushless motors require less maintenance compared to brushed motors. The brushes in brushed motors wear over time and need periodic replacement. Additionally, the commutator may require cleaning or resurfacing. In contrast, brushless motors have no brushes or commutator, eliminating the need for brush replacement and commutator maintenance. This makes brushless motors more reliable and reduces downtime and maintenance costs.

5. Lifespan:

The lifespan of brushless motors is generally longer than that of brushed motors. The absence of brushes and commutator reduces wear and electrical arcing, which are common causes of failure in brushed motors. Brushless motors can operate for thousands of hours without requiring major maintenance, while brushed motors typically have a shorter lifespan due to brush and commutator wear.

6. Control and Performance:

Brushless motors offer more precise control and better performance compared to brushed motors. The electronic commutation in brushless motors allows for finer control of the motor’s speed, torque, and direction. The external controller can adjust the motor’s parameters dynamically, enabling smoother operation and better responsiveness. Brushless motors also have higher torque-to-weight ratios, faster acceleration, and lower inertia, making them suitable for applications requiring high-performance and precise motion control.

These differences make brushless motors advantageous in many applications where efficiency, reliability, and precise control are crucial. They are commonly used in industries such as robotics, aerospace, electric vehicles, and industrial automation, where high-performance and long-lasting motors are required.

China manufacturer 57bl High Torque 12V 24V 36V 48V 60V Electrical Brushless DC Motor 30W 50W 75W 100W 200W 250W BLDC Geared Motor with Controller Brake Encoder Integrated   manufacturer China manufacturer 57bl High Torque 12V 24V 36V 48V 60V Electrical Brushless DC Motor 30W 50W 75W 100W 200W 250W BLDC Geared Motor with Controller Brake Encoder Integrated   manufacturer
editor by CX 2023-11-30

China Standard High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor vacuum pump connector

Product Description

Product Description

Feature: 
A. High power range from 5W to 20KW
B. Rich stock and fast shipping time in 10 working days
C. Easy for speed & direction adjustment
D. 16mm to 220mm size range with low noisy
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
J. Permanent magnet brushless dc motor
K.High-performance and stable matching driver and controller
High Speed 12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor with Controller

Style# Rated power(W) Rated voltag(V) Rated speed(r/min) Rated torque(N.m)  Peak torque(N.m) Rated current(A)  L=Motor length(mm)
D5BLD450-48A-30S 450W  DC48V  3000r/min  1.43 4.29 11.7A 90mm

Other Specification form:

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Flange Size

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 14 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 85/Piece
1 Piece(Min.Order)

|

Order Sample

brushless dc motor
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What role do electronic speed controllers (ESCs) play in brushless motor systems?

Electronic Speed Controllers (ESCs) play a crucial role in brushless motor systems as they are responsible for controlling the speed, direction, and performance of the motor. Here’s a detailed explanation of the role of electronic speed controllers in brushless motor systems:

1. Power Regulation: One of the primary functions of an ESC is to regulate the power supplied to the brushless motor. The ESC acts as an intermediary between the power source (such as a battery) and the motor, ensuring that the motor receives the appropriate voltage and current to operate at the desired speed and torque levels. The ESC monitors the input power and adjusts it based on the control signals it receives.

2. Commutation: Brushless motors require precise commutation, which involves switching the current flow in the motor windings to maintain proper magnetic field alignment and generate rotation. The ESC is responsible for coordinating the commutation process by electronically timing and sequencing the current pulses sent to the motor windings. This ensures smooth and efficient motor operation, allowing the motor to generate the desired torque and rotational speed.

3. Speed Control: ESCs enable precise speed control in brushless motor systems. By adjusting the timing and duration of the current pulses sent to the motor windings, the ESC can regulate the motor’s rotational speed. This speed control functionality is essential in various applications, such as drones, RC vehicles, robotics, and industrial automation, where precise speed adjustments are required to achieve the desired performance and functionality.

4. Direction Control: In addition to speed control, ESCs also provide direction control for brushless motors. By reversing the sequence of the current pulses sent to the motor windings, the ESC can change the direction of rotation of the motor. This allows for bi-directional operation, enabling the motor to perform tasks that require both clockwise and counterclockwise rotation.

5. Protection and Safety Features: ESCs often incorporate various protection and safety features to safeguard the motor and the overall system. These features may include overcurrent protection, overtemperature protection, low-voltage cutoff, and motor lock-up detection. By monitoring various parameters and conditions, the ESC can detect potential issues or abnormalities and take appropriate actions to prevent damage to the motor, ESC, or other components.

6. Interface and Control: ESCs provide an interface for external control and communication. They are typically equipped with input connectors to receive control signals from a receiver or a microcontroller, allowing for remote control or integration into a larger control system. Additionally, ESCs may offer advanced control features such as programmability, adjustable acceleration profiles, and compatibility with various control protocols (e.g., PWM, PPM, or CAN bus).

7. Efficiency and Performance Optimization: ESCs contribute to the overall efficiency and performance optimization of brushless motor systems. Through advanced control algorithms and power electronics, ESCs can minimize power losses, maximize energy conversion efficiency, and optimize the motor’s performance characteristics. This results in improved system efficiency, longer battery life, and enhanced motor performance.

In summary, electronic speed controllers (ESCs) play a vital role in brushless motor systems by regulating power, coordinating commutation, enabling speed and direction control, providing protection and safety features, offering control interfaces, and optimizing system efficiency and performance. The ESC acts as the central control unit that bridges the gap between the power source, the motor, and the external control system, ensuring smooth and reliable operation of brushless motors across a wide range of applications.

brushless motor

How does the control system of a brushless motor contribute to precise speed regulation?

The control system of a brushless motor plays a crucial role in achieving precise speed regulation, allowing for accurate and stable motor operation. By utilizing advanced control algorithms and feedback mechanisms, the control system effectively manages the power delivery and motor performance, resulting in precise speed control. Here’s a detailed explanation of how the control system of a brushless motor contributes to precise speed regulation:

  • Electronic Commutation: Brushless motors employ electronic commutation, which replaces traditional brushes and commutators with solid-state electronic components. The control system utilizes sensors, such as Hall effect sensors or encoders, to accurately detect the rotor position. By knowing the precise rotor position, the control system can switch the power supply to the motor windings at the optimal timing, ensuring smooth rotation and precise speed control.
  • Pulse Width Modulation (PWM): The control system utilizes pulse width modulation to regulate the power delivered to the motor windings. By adjusting the width of the electrical pulses, the control system can control the average voltage applied to the motor, thereby regulating the motor speed. Precise timing and modulation of the PWM signals allow for fine-grained control over the motor speed, enabling precise speed regulation with minimal speed fluctuations.
  • Feedback Control: The control system incorporates feedback control mechanisms to monitor and regulate the motor speed. Feedback is typically obtained from position sensors, such as encoders or Hall effect sensors, which provide real-time information about the rotor position. This feedback is compared to the desired speed reference, and any deviations are used to adjust the motor control signals. By continuously comparing the actual speed with the desired speed, the control system makes corrective adjustments to maintain precise speed regulation.
  • Proportional-Integral-Derivative (PID) Control: Many brushless motor control systems employ PID control algorithms to achieve precise speed regulation. PID control utilizes a combination of proportional, integral, and derivative control actions to minimize speed errors and maintain stable operation. The proportional control component responds to the current speed error, the integral control component integrates past speed errors to eliminate steady-state errors, and the derivative control component anticipates speed changes to improve response time. The PID control algorithm continuously adjusts the motor control signals based on the speed error, contributing to precise speed regulation.
  • Closed-Loop Control: The control system of a brushless motor typically operates in a closed-loop configuration, where the feedback from position sensors is used to regulate the motor speed. Closed-loop control ensures that the motor speed accurately follows the desired reference speed, even in the presence of external disturbances or varying load conditions. By continuously comparing the actual speed with the desired speed and making real-time adjustments, closed-loop control provides precise speed regulation and improves the motor’s ability to maintain a constant speed under changing operating conditions.
  • Advanced Control Techniques: The control system may incorporate advanced control techniques, such as field-oriented control (FOC) or vector control, to achieve even higher precision in speed regulation. These techniques involve transforming the motor currents and voltages into a rotating reference frame, allowing for independent control of the magnetizing and torque-producing components. By decoupling these components and controlling them separately, advanced control techniques enable precise control of the motor speed and improve overall performance.

In summary, the control system of a brushless motor contributes to precise speed regulation through electronic commutation, pulse width modulation, feedback control, PID control algorithms, closed-loop control, and advanced control techniques. By utilizing these control strategies, the control system ensures accurate and stable motor operation, allowing for precise speed control and minimizing speed deviations in various applications.

brushless motor

In which industries are brushless motors commonly employed, and what are their key roles?

Brushless motors find applications in a wide range of industries, thanks to their numerous advantages and capabilities. Here are some of the industries where brushless motors are commonly employed and their key roles:

1. Automotive Industry:

In the automotive industry, brushless motors are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They play a crucial role in providing propulsion for these vehicles, driving the wheels and ensuring efficient power delivery. Brushless motors offer high efficiency, precise control, and fast acceleration, making them ideal for electric drivetrains. Additionally, they are employed in various automotive subsystems such as electric power steering, HVAC systems, cooling fans, and braking systems.

2. Aerospace and Aviation:

Brushless motors have significant applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations. Their high power-to-weight ratio, compact size, and high-speed capabilities make them well-suited for aerospace requirements.

3. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They power robotic arms, joints, and grippers, enabling accurate and controlled movements. Brushless motors offer high torque, precise position control, and rapid acceleration, making them vital for industrial robotics, collaborative robots (cobots), and automated manufacturing processes. Their compact size and efficiency also contribute to the design and performance of robotic systems.

4. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes. Their ability to handle high loads, operate at high speeds, and offer precise control makes them valuable in demanding industrial environments.

5. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of the industries where brushless motors are commonly employed. Their efficiency, reliability, precise control, compact size, and high-performance characteristics make them versatile and valuable in many other sectors as well. As technology continues to advance, brushless motors are likely to find new applications and play increasingly important roles in various industries.

China Standard High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor   vacuum pump connector	China Standard High Torque12V 24V 36V 40V 48V 72V 250W 300W 450W 500W 600W 750W 800 Watt 2800rpm 3000 Rpm Permanent Magnet BLDC Brushless Air Cooler DC Motor   vacuum pump connector
editor by CX 2023-11-16

China YS7114 250W 3 phase electric motor AC MOTOR with Great quality

Warranty: 3months-1year
Model Number: YS711-4
Type: Asynchronous Motor
Frequency: 50HZ/60HZ
Phase: Three-phase
Protect Feature: Drip-proof
AC Voltage: 460 / 480 V
Efficiency: IE 2
Customizable: Yes
Material: Aluminum housing
Certification: CCC CE
Packaging Details: 1set/ctn
Port: HangZhou

YS 3 phase motorac motor YS6314 120w
CONDITIONS

Ambient temperature-15℃<0<40℃
AltitudeNot exceed 1000m
Rated voltage220v,110v~240v is available
Rated frequency50HZ/60HZ
DutyS1(continuous)
Insulation classB,F,H
Protection classIP54,IP55
Coolong methodIC0141
Product show

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Motor

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China YS7114 250W 3 phase electric motor AC MOTOR     with Great qualityChina YS7114 250W 3 phase electric motor AC MOTOR     with Great quality
editor by czh

China best Factory Supply E-Bike Waterproof IP65 Motor 36V 250W Brushless DC Gear Hub Motor Electric Bicycle Motor with Free Design Custom

Product Description

 

Brake Kind V brake
Open up fork dimension(mm/Aged) seventy five~80
Greatest outer diameter(mm) one hundred twenty
Outlet wire position proper aspect,shaft side  
cable routing Shaftout,sideout
outlet wire duration(mm) 310
connection wire type G9.5
Spoke requirements 36H13G
Quantity of velocity magnets 6
Reduction ratio 1:twelve.5
Number of motor poles(2P) sixteen
Watertight efficiency IP 65
Certification CCC,CQC,CE
Anti- corrosion quality(hrs) forty eight
Installation spot Entrance motor
Wheel diameter(inch) (16-29)”&700C
Structure gear generate
Rated Voltage(DCV) 36
cut in speed(Rpm) 340
capability ranking(W) 250w
load speed(Rpm) 280
Highest torque(N.M) 30
effectiveness >80%
Color Black/Silver
excess weight(kg) 1.seventy four
Noise(dB) <50
temperature acclimation(ºC) (-twenty~seventy five)ºC

The rotor of a reluctance motor is composed of a sound forged metal element with a convex toothed rack. Their starting method is comparable to an induction motor, but it operates like a synchronous motor. Typically, their rotors have less poles than stators, which minimizes torque ripple and stops perfect pole alignment, as no torque is produced in that location. Reluctance motors variety in power rankings from a number of watts to about 22 kilowatts.
An AC motor is a kind of motor that utilizes the phenomenon of electromagnetic induction. AC power drives the motor. It is a present that periodically reverses route and modifications its magnitude of the present in excess of time. This recent is the reverse of a immediate recent or “DC” which flows in only 1 course. AC motors can supply a fairly successful way to generate mechanical power from a easy electrical input sign.

China best Factory Supply E-Bike Waterproof IP65 Motor 36V 250W Brushless DC Gear Hub Motor Electric Bicycle Motor     with Free Design Custom

China Good quality 24/36/48V 250W 16-28inch Open Size 135mm Disk Brake/V Brake Rear Spoke Motor with Free Design Custom

Product Description

Specification:

Rated Voltage           (V): 24/36/48 Cable Location           Shaft heart left 
Rated Power            (W): 250 Spoke Specification    12G/13G
Wheel Size               sixteen-28 Corridor Sensor                                               Optional
Rated Speed             (km/h) 20-30 Combine speed sensor                                             Optional
Rated Efficiency            ≥80% Surface                Black/Silver    
Reduction Ratio          1:12.6 Magnets number           16
Open Size             135 Brake Type                  Disc brake/V brake
Weight                    (kg) 2.05 Travel and Freewheel          Rear 5-7S
Noise                     (db) ≤45 Watertight Grade       IP54

Business profile:
HangZhou XINHangZhou MOTOR Technologies CO., LTD. is a specialist manufacture of electric bicycle motors, electrical bicycle kits in excess of 10 a long time. It is situated in the shore of Tai lake, HangZhou, ZheJiang , China. It is 10kms from HangZhou global airport, 3kms from substantial-way station. We mainly make electrical bicycle motors, with CZPT administration and sophisticated gear, we are rapidly creating. Our motors have received CE, ROHS certification. Our manufacturing facility is CZPT for substantial good quality in China. We can generate more than one hundred thousand pcs for every year, and have been exported to numerous international locations like Europe, The us, Western Asia and many others. We always pay considerably interest to the good quality and new design, and our technological innovation enhanced working day by day.

Firm picture:

FAQ

1. Q:Can I place sample orders? kit for electric bicycle 
A: Yes, but an extra sample cost would be essential is dependent on the product you pick.

2. Q: What is your delivery time?  rear travel kit for electric powered bicycle
A: Typically talking we can delivery in 35 times right after obtaining you deposit if there are not any special requests.

3. Q: What is your payment time period? 36v 350w package for electric powered bicycle
A: T/T 30% deposit and prior to creation and 70% balance before shipping or see the duplicate of B/L.

4. Q: What is your guarantee phrase?6V 350w e-bicycle conversion kits

A: We provide 1 calendar year warranty for battery and 2 year warranty for motor.

5. Q: Do you have items in stock? 
A: No, we generate according to orders, besides to some widespread components to guarantee the shipping time.

6. Q: How do you management the high quality?
A: We have QC individuals from components come in the end of generation. Before the shipment, every part would be fully analyzed and highway tests till ultimate packing.

7. Q: OEM is feasible or not?
A: Indeed.

Any inquiries, make sure you truly feel cost-free to speak to us.

AC motors and gear motors include single-section motors for solitary-period AC electricity and a few-stage motors for three-period AC power. A single-stage motor basically requirements to be connected to a solitary-section electricity supply by means of the incorporated capacitors to operate. 3-period motors do not demand capacitors. You just link the motor directly to the a few-stage AC electrical power provide. Dongfang Electrical gives a broad range of AC motors and gear motors Continuous or variable velocity AC motors are available with one or three-stage gear and electromagnetic braking possibilities
Synchronous motors run at a speed that is synchronous with the frequency of the mains present. This means that in the continual-condition of the motor, the rotation of the shaft is synchronized with the frequency of the provide present. The period of rotation of the shaft is equivalent to the number of AC cycles. The stator of a synchronous motor has polyphase AC electromagnets. These electromagnets make a magnetic subject that rotates in synchrony with the current in the wire. The rotor equipped with permanent magnets or electromagnets rotates synchronously with the stator magnetic discipline to sort the second synchronous rotating magnetic field of the AC motor.

China Good quality 24/36/48V 250W 16-28inch Open Size 135mm Disk Brake/V Brake Rear Spoke Motor     with Free Design Custom

China wholesaler 24V 250W 20″ Disc Brake/V Brake Open Size: 138mm Max Speed: 32km/H Ebike One Wheel Motor with Good quality

Solution Description

Specification:

Rated Voltage           (V): 24/36/48 Cable Location           Shaft centre right 
Rated Power         (W): 250-500 Spoke Specification       /
Wheel Size                 twenty” Hall Sensor                                            Optional
Rated Speed            (km/h) twenty five-32 Integrate velocity sensor                                 Optional
Rated Efficiency           ≥78% Surface                  Black/Silver    
Reduction Ratio           1:5 Magnets number          twenty
Open Size                   138 Brake Type                 Disc brake/ V brake           
Weight                  (kg) six.5 Generate and Freewheel       Rear5-7s
Noise                      (db) ≤55 Waterproof Grade         IP54

Business profile:
HangZhou XINHangZhou MOTOR Technology CO., LTD. is a expert manufacture of electrical bicycle motors, electrical bicycle kits more than 10 years. It is situated in the shore of Tai lake, HangZhou, ZheJiang , China. It is 10kms from HangZhou intercontinental airport, 3kms from higher-way station. We largely make electric bicycle motors, with CZPT administration and sophisticated products, we are speedily creating. Our motors have got CE, ROHS certification. Our factory is CZPT for substantial high quality in China. We can make far more than a hundred thousand pcs per year, and have been exported to several international locations which includes Europe, The us, Western Asia and so on. We constantly spend a lot focus to the high quality and new design and style, and our technology improved working day by day.
Business photo: 
Client Visit:

FAQ

one. Q:Can I spot sample orders? kit for electrical bicycle 
A: Of course, but an additional sample expense would be needed relies upon on the merchandise you choose.

two. Q: What is your delivery time?  rear push kit for electric bicycle
A: Usually speaking we can delivery in 35 days following acquiring you deposit if there aren’t any particular requests.

three. Q: What is your payment phrase? 36v 350w package for electric powered bicycle
A: T/T thirty% deposit and before manufacturing and 70% stability prior to transport or see the duplicate of B/L.

four. Q: What is actually your warranty phrase?6V 350w e-bike conversion kits

A: We provide 1 yr warranty for battery and 2 year guarantee for motor.

five. Q: Do you have items in stock? 
A: No, we make in accordance to orders, besides to some typical areas to make sure the shipping time.

six. Q: How do you handle the top quality?
A: We have QC individuals from parts arrive in the end of manufacturing. Just before the cargo, every single element would be fully analyzed and highway tests until ultimate packing.

seven. Q: OEM is possible or not?
A: Of course.

Any concerns, make sure you feel free to make contact with us.

AC motors and equipment motors contain solitary-stage motors for solitary-period AC electrical power and 3-period motors for three-stage AC electrical power. A single-stage motor just needs to be related to a one-section electricity supply by way of the incorporated capacitors to function. Three-stage motors do not demand capacitors. You just join the motor immediately to the 3-section AC electricity offer. Dongfang Electrical offers a wide variety of AC motors and gear motors Consistent or variable velocity AC motors are available with single or a few-phase equipment and electromagnetic braking possibilities
An AC motor is a kind of motor that utilizes the phenomenon of electromagnetic induction. AC electricity drives the motor. It is a existing that periodically reverses path and changes its magnitude of the existing more than time. This existing is the opposite of a immediate current or “DC” which flows in only 1 path. AC motors can offer a comparatively efficient way to produce mechanical strength from a easy electrical enter signal.

China wholesaler 24V 250W 20

China manufacturer 24V 250W 26″ Open Size: 138mm Max Speed: 32km/H One Wheel Motor for Electric Bicycle near me factory

Product Description

Specification:

Rated Voltage             (V): 24/36/forty eight Cable Location            Shaft heart right 
Rated Power             (W): 250-350 Spoke Specification        /
Wheel Size                 twenty/26 Hall Sensor           Optional
Rated Speed              (km/h) 25-32 Integrate speed sensor    Optional
Rated Efficiency            ≥78% Surface                 Optional
Reduction Ratio           one:4.three Magnets number        20
Open up Size             138 Brake Type               Disc brake/V brake
Weight                   (kg) four.5 Travel and Freewheel     Rear5-7s 
Noise                   (db) ≤55 Waterproof Grade         IP54

Organization profile:
HangZhou XINHangZhou MOTOR Engineering CO., LTD. is a professional manufacture of electric bicycle motors, electrical bicycle kits more than 10 years. It is found in the shore of Tai lake, HangZhou, ZheJiang , China. It is 10kms from HangZhou intercontinental airport, 3kms from higher-way station. We mostly create electric powered bicycle motors, with CZPT administration and innovative products, we are quickly creating. Our motors have obtained CE, ROHS certification. Our manufacturing facility is CZPT for large high quality in China. We can create more than a hundred thousand pcs per yr, and have been exported to a lot of nations around the world such as Europe, The usa, Western Asia and so on. We usually spend much interest to the high quality and new style, and our engineering enhanced day by day.
Company image:
Customer Go to:

FAQ

one. Q:Can I area sample orders? kit for electric powered bicycle 
A: Yes, but an added sample price would be essential depends on the item you choose.

2. Q: What’s your delivery time?  rear generate package for electric powered bicycle
A: Usually talking we can supply in 35 times soon after obtaining you deposit if there usually are not any specific requests.

3. Q: What is your payment expression? 36v 350w kit for electric powered bicycle
A: T/T thirty% deposit and prior to generation and 70% harmony before delivery or see the copy of B/L.

four. Q: What’s your guarantee expression?6V 350w e-bicycle conversion kits

A: We supply 1 year guarantee for battery and 2 yr warranty for motor.

5. Q: Do you have products in stock? 
A: No, we make in accordance to orders, other than to some common elements to make sure the supply time.

6. Q: How do you management the good quality?
A: We have QC men and women from parts come in the conclude of generation. Prior to the cargo, each portion would be completely examined and highway testing until closing packing.

seven. Q: OEM is achievable or not?
A: Indeed.

Any queries, make sure you feel totally free to make contact with us.

AC motors are also diverse from DC motors since most AC motors do not incorporate brushes. This indicates that servicing and parts alternative demands for AC motors tend to be significantly decreased, with most users generally anticipating a for a longer time regular lifespan. As opposed to DC motors, the output velocity of several kinds of AC motors is frequently decided by inverter manage – yet again, we will briefly outline a range of likely variations on the fundamental AC motor design.
An AC motor is a widespread kind of electric powered motor that is driven by alternating current. As the most productive sensible motors for every day industrial apps (as properly as hobbyist projects, family products, and all other professional products and customer merchandise), AC motors provide a relatively successful technique of making mechanical vitality from a easy electrical enter sign.

China manufacturer 24V 250W 26

China high quality CZPT Brushless 24V 250W Motor for Electric Wheelchair Motor wholesaler

Merchandise Description

Topmedi Brushless 24V 250W Motor for Electrical Wheelchair Motor

 

wheelchair motor 250w

 

Polyphase motors can be both two-phase or 3-period motors. They function like single-stage induction motors, but the two one-period and polyphase motors operate on a rotating magnetic area. Their rotating magnetic fields are created by two- or a few-period currents passing by way of two or more sets of coils. The rotating magnetic subject makes torque. Polyphase motors are used in programs that call for large electricity, this kind of as the energy drive of compressors, hydraulic pumps, air conditioning compressors, and irrigation pumps.
Polyphase motors can be either two-stage or a few-period motors. They function like solitary-section induction motors, but both solitary-period and polyphase motors function on a rotating magnetic discipline. Their rotating magnetic fields are produced by two- or three-section currents passing by way of two or more sets of coils. The rotating magnetic field makes torque. Polyphase motors are utilised in applications that need substantial energy, this sort of as the electrical power travel of compressors, hydraulic pumps, air conditioning compressors, and irrigation pumps.

China high quality CZPT Brushless 24V 250W Motor for Electric Wheelchair Motor     wholesaler