Tag Archives: dc motor 12v

China OEM High Speed Brushless Motor Diameter AC 230V DC 12V Motor High 110000 Rpm for Hair Dryer with high quality

Product Description

Product Description

To our esteemed customers who are exploring our products:

Ruiya is a member of the Useful Alliance, a Hong Kong trading group established in 1982. Our alliance consists of over 100 factories in ZheJiang . we have a strong track record in serving major clients and effectively managing complex supply chains.

We offer the following services:

1.Diverse product demand matching service – With our strong supply chain management capabilities, we provide professional end-to-end product demand matching services. This includes customized research, development, and production for various product categories. We ensure both capacity assurance and after-sales support.

2.Dedicated project team support – Our international trade team possesses expertise in marketing, product development, business, design, and operations. Our team members include overseas students from the UK and the US, facilitating seamless language communication and after-sales support. We can assist you in understanding market trends for your country’s products, help formulate product sales plans, and provide product information such as images, videos, and specifications to support your sales activities.

3.Professionally equipped product quality inspection team – Your orders will be closely monitored by a dedicated team to ensure strict control over product production, quality inspection, acceptance, and delivery. We guarantee product quality for you.

4.Multiple logistics channel options – Through our collaboration with various freight and logistics companies, we can help you save on logistics costs and ensure timely product delivery.

We are delighted to explore potential opportunities for collaboration, and we would greatly appreciate it if you could contact us.

The services we can provide include:


About this:

Diameter 28mm,
110,000 rpm,
Patented fan blades,
Brushless Motor,
Wind deflection cone,
0.55mm copper wire,
Durable 2000h.

If you need custom colors or functions, please be sure to contact me.
 

Product Specification.

APPLICATIONS

Business Machines

intelligent robot.Copiers and Scanners.3D Printers.Tattoo pen.Lampblack machine.New energy charging lock.Advertising machine.

Electric powered equipment

Electric toothbrush,Electric tool,adult erotica products,Electric toy car,Electric curtain.Razor.Electric Drill.Cosmetic instrument.

Smart 

Home

Intelligent window opener ,vacuum cleaner, Smart coffee Machine,hair drier,Massage Gun,Fan,air cleaner,Hair removal Device,door lock,Intelligent door lock.Water pump.Air Multiplier.

Food and Beverage

Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.

Medical

sphygmomanometer, Massaging mattress, Air pump,  Urine Analyzer.

Robotics

Sweeping Robot.Servicing robotics, Food delivery robot, Reception robot, Medical serving robot, Convenying robot, Inspection robot.Underwater robot.

Detailed Photos

Motor raw materials

Casing, bearing, iron core, magnetic steel, lead wire, balance mud, copper meson, PCB board, enameled wire, wire frame, graphite meson, drive plate, etc

 

Company Profile

 

FAQ

1.What is the main product line of your factory? We specialize in manufacturing turntables or record players.

2.What types of turntables do you produce? We produce a variety of turntable models, including box-style turntables, desktop speakers, floor-standing turntables, cabinet-style turntables, and high-end audiophile turntables.

3.Are your products certified for quality and safety? Yes, our products are certified with CE, EMC, LVD, ROHS, and FCC standards, ensuring quality and safety compliance.

4.Do you offer OEM and ODM services? Yes, we offer both OEM (Original Equipment Manufacturer) and ODM (Original Design Manufacturer) services to meet specific customer requirements.

5.Can I visit your factory to see the production process? Certainly! You are welcome to visit our factory and witness the production process firsthand. Please let us know in advance, so we can make appropriate arrangements.

6.What is the production capacity of your factory? Our factory has a production capacity of (specify the number) turntables per month, depending on the model and specifications.

7.How do you ensure product quality? We have a dedicated team of quality control (QC) staff responsible for inspecting our products at different production stages. In addition, we have obtained ISO9001:2008 certification and have passed BSCI Audit by TUV.

8.What is your export market reach? Our products are exported to various regions, including Europe, America, Asia, and other countries worldwide.

9.How can I place an order? To place an order, please contact our sales team via email or phone. Provide details about your requirements, such as product model, quantity, customization needs, and delivery destination.

10.What are your payment terms? Our preferred payment terms are (specify the accepted payment methods and terms, such as T/T, L/C, etc.). Please discuss with our sales team for further details.

11.What is your delivery time? The delivery time may vary depending on the order quantity and customization requirements. Our sales team will provide you with an estimated delivery time CHINAMFG order confirmation.

12.What is your after-sales service policy? We provide comprehensive after-sales service and support. In case of any product issues or concerns, please contact our customer service team, and we will assist you accordingly.

Please feel free to contact us if you have any other questions or inquiries not covered in this FAQ. We are committed to providing excellent service and meeting your needs to the best of our abilities.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Brushless DC Electric Motor
Motor Type: Permanent Motor
Usage: Fan, Home Appliance, Cosmetic Instrument, Smart Ho
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless ac motor

In what applications are brushless AC motors commonly used?

Brushless AC motors find extensive application in various industries and sectors due to their numerous advantages. Here are some common applications where brushless AC motors are commonly used:

  • Industrial Automation: Brushless AC motors are widely employed in industrial automation systems, including conveyor belts, robotic arms, packaging machinery, and CNC machines. Their precise control, high efficiency, and reliability make them suitable for these demanding applications.
  • Electric Vehicles (EVs): Brushless AC motors are a popular choice for electric vehicles, including electric cars, motorcycles, and scooters. They offer high torque, efficient power conversion, and regenerative braking capabilities, contributing to the overall performance and range of electric vehicles.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often use brushless AC motors in fans and blowers. The motors provide energy-efficient operation, precise airflow control, and quieter performance compared to traditional brushed motors.
  • Aerospace and Aviation: Brushless AC motors are employed in various aerospace and aviation applications, such as aircraft actuators, flight control systems, and auxiliary power units. The motors offer lightweight design, high power density, and reliable operation in demanding environments.
  • Medical Equipment: Many medical devices and equipment, including surgical tools, imaging systems, and laboratory equipment, utilize brushless AC motors. The motors provide precise control, low noise, and long life, ensuring the reliability and effectiveness of medical procedures.
  • Home Appliances: Brushless AC motors are increasingly used in home appliances such as refrigerators, washing machines, and dishwashers. They offer energy-efficient operation, reduced noise, and enhanced durability compared to traditional brushed motors.
  • Renewable Energy: Brushless AC motors play a crucial role in renewable energy systems like wind turbines and solar tracking systems. Their high efficiency and precise control contribute to optimizing energy generation and harnessing renewable resources effectively.
  • Electronics and Computer Cooling: Brushless AC motors are utilized in electronics and computer cooling applications, including fans and heatsinks. The motors provide efficient heat dissipation, reliable cooling, and quiet operation to prevent overheating and ensure the optimal performance of electronic components.

These are just a few examples of the many applications where brushless AC motors are commonly used. Their versatility, efficiency, reliability, and precise control make them an ideal choice across various industries and sectors.

brushless ac motor

Can brushless AC motors be used in both industrial and residential settings?

Yes, brushless AC motors can be used in both industrial and residential settings. The versatility and advantages of brushless AC motors make them suitable for a wide range of applications. Here’s a detailed explanation:

Industrial Applications:

Brushless AC motors are widely used in various industrial applications due to their high efficiency, reliability, and precise control. Some common industrial applications where brushless AC motors are utilized include:

  • Industrial Machinery: Brushless AC motors are often used in industrial machinery such as conveyor systems, pumps, compressors, and fans. Their high torque, variable speed control, and efficient operation make them suitable for driving heavy loads and providing reliable performance in demanding industrial environments.
  • Robotics: Brushless AC motors find extensive use in robotics applications. The precise control capabilities of brushless motors, coupled with their compact size and high power density, make them ideal for powering robotic arms, grippers, and other motion control systems.
  • Automotive: Brushless AC motors are increasingly being employed in electric and hybrid vehicles. They offer high power-to-weight ratios, efficient operation, and regenerative braking capabilities, making them suitable for propulsion systems, power steering, and other automotive applications.
  • Aerospace: Brushless AC motors are used in aerospace applications, including aircraft systems, control surfaces, and landing gear mechanisms. Their reliability, compactness, and high performance make them suitable for the demanding requirements of the aerospace industry.
  • Industrial Automation: Brushless AC motors play a critical role in industrial automation systems. They are used in CNC machines, robotic arms, assembly lines, and other automated processes, providing accurate and reliable motion control.

Residential Applications:

Brushless AC motors are also finding increased use in residential settings, thanks to their energy efficiency, quiet operation, and long lifespan. Some common residential applications where brushless AC motors are utilized include:

  • Appliances: Brushless AC motors are employed in various household appliances such as refrigerators, air conditioners, washing machines, and dishwashers. They offer energy-efficient operation, precise control, and reduced noise levels, enhancing the performance and user experience of these appliances.
  • HVAC Systems: Brushless AC motors are used in heating, ventilation, and air conditioning (HVAC) systems. They provide efficient and reliable operation for fans, blowers, and pumps, contributing to energy savings and optimal indoor comfort.
  • Smart Home Devices: Brushless AC motors are integrated into smart home devices, including motorized window blinds, smart locks, and automated lighting systems. They offer quiet operation, precise positioning, and energy efficiency, enhancing the convenience and functionality of these devices.
  • Power Tools: Brushless AC motors are increasingly used in power tools such as drills, saws, and sanders. They deliver high power output, longer runtime, and longer tool life compared to brushed motors, making them desirable for DIY enthusiasts and professionals alike.

With their versatility, energy efficiency, and reliability, brushless AC motors have become a preferred choice in both industrial and residential settings. They offer numerous benefits, including improved performance, reduced maintenance requirements, and enhanced energy savings, making them suitable for a wide range of applications across various sectors.

brushless ac motor

Can you explain the concept of back electromotive force (BEMF) in brushless AC motors?

Back electromotive force (BEMF) is an important concept in brushless AC motors. It refers to the voltage that is induced in the motor’s windings when the rotor rotates in the magnetic field generated by the stator. BEMF plays a crucial role in the operation and control of brushless AC motors. Here’s a detailed explanation of the concept of BEMF and its significance:

When an electric current flows through the motor’s stator windings, it creates a magnetic field that interacts with the permanent magnets or field windings on the rotor. As the rotor spins, the magnetic field lines cut across the stator windings, inducing a voltage in the windings. This induced voltage opposes the applied voltage and is referred to as the back electromotive force (BEMF).

BEMF is a consequence of Faraday’s law of electromagnetic induction, which states that a changing magnetic field induces an electromotive force in a conductor. In the case of brushless AC motors, the rotating rotor and the fixed stator create a changing magnetic field that induces a voltage in the stator windings.

The magnitude and waveform of the BEMF depend on several factors, including the speed of the motor, the number of winding turns, the strength of the magnetic field, and the design of the motor. At low speeds, the BEMF is relatively low, while at high speeds, the BEMF increases proportionally with the speed of the motor.

The BEMF in brushless AC motors serves several important purposes:

  • Motor Control: BEMF is used as feedback in motor control systems to determine the rotor position and speed. By measuring the BEMF, the motor controller can accurately synchronize the switching of the inverter to energize the stator windings at the correct time, ensuring optimal motor performance.
  • Commutation: BEMF provides information about the position of the rotor relative to the stator windings. This information is crucial for determining when to switch the current flow between different windings to generate the rotating magnetic field necessary for motor operation. By monitoring the BEMF, the motor controller can precisely control the commutation sequence, ensuring smooth and efficient motor operation.
  • Speed Regulation: BEMF is directly related to the speed of the motor. By measuring the BEMF, the motor controller can accurately determine the speed of the motor and adjust the applied voltage or frequency to maintain the desired speed. This speed regulation capability allows brushless AC motors to operate at variable speeds, providing flexibility and energy efficiency in various applications.
  • Overvoltage Protection: BEMF also plays a role in protecting the motor from overvoltage conditions. If the motor is being driven at high speed and the load suddenly decreases or the motor decelerates rapidly, the BEMF can increase significantly. The motor controller can monitor the BEMF and detect this overvoltage condition, triggering protective measures to prevent damage to the motor or other components.

In summary, back electromotive force (BEMF) is the voltage induced in the stator windings of brushless AC motors as a result of the rotor’s rotation in the magnetic field. BEMF is used for motor control, commutation, speed regulation, and overvoltage protection. Understanding and utilizing BEMF is essential for efficient and precise operation of brushless AC motors.

China OEM High Speed Brushless Motor Diameter AC 230V DC 12V Motor High 110000 Rpm for Hair Dryer   with high quality China OEM High Speed Brushless Motor Diameter AC 230V DC 12V Motor High 110000 Rpm for Hair Dryer   with high quality
editor by CX 2024-05-13

China Best Sales Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W vacuum pump oil

Product Description

Brushed or Brushless DC Motors, Customized Specifications, OEM/ODM

Option for :
Customized shaft, performance, voltage, mounting, lead wires..

Option for :
Electric Brake, Planetary Gearbox, Worm Gearbox, Encoder, Controller Integrated

1. BRUSHED DC MOTOR :

Voltage 12v, 24v, 36v, 48v, upto 310vdc

power 5w  to 1000w

speed 1pm upto 10000rpm 

Dia. 30mm, 32mm, 36mm, 38mm, 42mm, 52mm, 54mm, 63mm, 70mm, 76mm, 80mm, 90mm, 110mm

Belows are some typical models,

2. BRUSHLESS DC MOTOR :
 

Voltage 12v, 24v, 36v, 48v, upto 380vdc

power 5w  to 2000w

speed 1pm upto 15000rpm 

Size 28mm, 30mm, 36mm, 42mm, 57mm, 60mm, 63mm, 70mm, 80mm, 86mm, 110mm

Bearing High quality ball bearing
Poles  4- poles 8-poles 12-poles
Protection class IP40 IP55 option
Insulation class class: F

Belows are some typical models,

Below are only some typical models for reference.

63ZYT Series Permanent magnet Brushed Dc Motors

57HBL Series Brushless Dc Motors

56JXE300K. 63ZYT Series Dc Planetary Gear Motor

56JXE300K. 57HBL Series Brushless Dc Planetary Gear Motor

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Machine, Robot
Operating Speed: Constant Speed
Excitation Mode: Pm
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

brushless motor

How do brushless motors compare to brushed motors in terms of lifespan and reliability?

When comparing brushless motors to brushed motors, there are notable differences in terms of lifespan and reliability. Here’s a detailed explanation of how brushless motors compare to brushed motors in these aspects:

1. Lifespan:

Brushed motors typically have a shorter lifespan compared to brushless motors. This is primarily due to the mechanical wear and tear associated with brushed motors. In brushed motors, the brushes and commutator make physical contact, causing friction, heat generation, and eventual wear. Over time, the brushes wear down and the commutator may become worn or damaged, leading to degraded motor performance and eventual failure. On the other hand, brushless motors do not have brushes or commutators, eliminating the mechanical wear components. As a result, brushless motors generally have a longer lifespan and can operate for thousands of hours with minimal maintenance.

2. Reliability:

Brushless motors are generally considered more reliable than brushed motors. The absence of brushes and commutators in brushless motors reduces the risk of failure due to mechanical wear and associated issues like brush sparking and arcing. The elimination of these moving parts also leads to reduced friction, less heat generation, and lower chances of electrical or mechanical failures. Additionally, brushless motors often benefit from advanced control systems that can monitor and protect against various operating conditions, enhancing their overall reliability.

3. Operating Conditions:

Brushless motors are better suited for demanding operating conditions compared to brushed motors. The absence of brushes and commutators in brushless motors means there are no physical contacts that can generate sparks or cause electrical arcing. This makes brushless motors more suitable for applications where sparks or electrical noise can be problematic, such as in explosive or sensitive electronic environments. Furthermore, brushless motors can operate at higher speeds and handle higher torque loads than brushed motors, making them more versatile in a wide range of applications.

4. Maintenance:

Brushless motors generally require less maintenance compared to brushed motors. Brushed motors often require periodic maintenance to replace worn-out brushes and address commutator issues. Additionally, the presence of brushes can lead to carbon dust buildup, requiring regular cleaning and maintenance. In contrast, brushless motors have no brushes or commutators to replace or clean, significantly reducing the maintenance requirements. However, it’s important to note that brushless motors may still require periodic inspections, especially for cooling systems or bearings, to ensure optimal performance and reliability.

5. Efficiency:

Brushless motors are typically more efficient than brushed motors. The absence of brushes and commutators in brushless motors reduces energy losses associated with friction and electrical resistance. This improved efficiency results in several benefits, such as reduced power consumption, longer battery life (in battery-powered applications), and less heat generation. Brushless motors are known for their high power-to-weight ratio and can deliver higher torque output per unit of input power compared to brushed motors.

In summary, brushless motors generally offer a longer lifespan and higher reliability compared to brushed motors. The absence of brushes and commutators reduces mechanical wear and associated failures, making brushless motors more durable. They are better suited for demanding operating conditions, require less maintenance, and offer improved efficiency. These factors have made brushless motors increasingly popular in various applications, including robotics, electric vehicles, industrial automation, and aerospace, where reliability and longevity are essential.

brushless motor

What is the significance of commutation in brushless motor operation, and how is it achieved?

Commutation is a critical aspect of brushless motor operation as it determines the timing and sequence of current flow in the motor windings. It is the process by which the motor’s magnetic field is switched to generate continuous rotation. The significance of commutation lies in its ability to maintain proper alignment between the magnetic field produced by the stator and the rotor’s permanent magnets, resulting in smooth and efficient motor operation. Here’s a detailed explanation of the significance of commutation in brushless motor operation and how it is achieved:

1. Magnetic Field Alignment: Commutation ensures that the magnetic field produced by the motor’s stator windings is properly aligned with the permanent magnets on the rotor. This alignment is crucial for generating the necessary torque to drive the rotor and produce rotation. By switching the current flow in the motor windings at the right time and in the right sequence, commutation ensures that the stator’s magnetic field interacts effectively with the rotor’s magnets, producing continuous and smooth rotation.

2. Efficient Power Conversion: Commutation plays a vital role in efficient power conversion within the brushless motor. As the current flows through the motor windings, commutation switches the current path to maintain the desired direction of rotation. By timely switching the current flow, commutation minimizes power losses and maximizes the energy transfer between the power supply and the motor. This efficient power conversion results in improved motor performance, higher energy efficiency, and reduced heat generation.

3. Elimination of Brushes and Commutators: Unlike brushed motors that rely on mechanical brushes and commutators for current switching, brushless motors achieve commutation electronically. This eliminates the need for brushes and commutators, which are prone to wear, friction, and electrical arcing. By replacing these mechanical components with solid-state electronic commutation, brushless motors offer several advantages, including reduced maintenance requirements, longer lifespan, and improved reliability.

4. Precise Speed Control: Commutation in brushless motors enables precise speed control. By accurately timing and sequencing the current flow in the motor windings, the control system of a brushless motor can regulate the motor’s rotational speed. This precise speed control is crucial in applications that require specific speed requirements, such as robotics, electric vehicles, and industrial automation.

5. Commutation Methods: Brushless motors achieve commutation through various methods, the most common being sensor-based commutation and sensorless commutation. Sensor-based commutation utilizes position sensors, such as Hall effect sensors or encoders, to detect the rotor’s position and determine the appropriate timing and sequence of current switching. Sensorless commutation, on the other hand, estimates the rotor position based on the back electromotive force (EMF) generated in the motor windings. Advanced control algorithms and signal processing techniques are employed to accurately estimate the rotor position and achieve precise commutation without the need for additional sensors.

In summary, commutation is of significant importance in brushless motor operation. It ensures proper alignment of the magnetic fields, enables efficient power conversion, eliminates mechanical wear components, allows for precise speed control, and contributes to the overall performance and reliability of brushless motors. Through sensor-based or sensorless commutation methods, brushless motors achieve accurate and timely switching of current flow, resulting in smooth rotation and optimal motor performance.

brushless motor

Can you explain the working principle of brushless motors and how they generate motion?

Brushless motors operate based on the principles of electromagnetism and electronic commutation. Here’s an explanation of the working principle of brushless motors and how they generate motion:

1. Stator and Rotor:

A brushless motor consists of two main components: a stationary stator and a rotating rotor. The stator contains multiple coils or windings arranged in a specific pattern. These windings are typically made of copper wire and are evenly spaced around the inner circumference of the motor housing. The rotor, on the other hand, contains permanent magnets that are magnetized in a specific pattern.

2. Electronic Commutation:

The key difference between brushless motors and brushed motors is the method of commutation. In brushed motors, commutation is achieved mechanically through brushes and a commutator. However, in brushless motors, commutation is electronic. The commutation process is managed by an external controller or electronic speed controller (ESC).

3. Rotor Position Detection:

To determine the rotor’s position, brushless motors use sensors or Hall effect devices embedded in the stator. These sensors detect the position of the permanent magnets on the rotor as it rotates. The sensor information is sent to the controller, which uses it to determine the timing and sequence of current flow in the stator windings.

4. Current Distribution:

Based on the rotor position information, the controller determines which stator windings need to be energized to generate the desired motion. The controller then sends electric currents to the appropriate windings in a specific sequence. By energizing different windings at different times, the controller can create a rotating magnetic field in the stator.

5. Magnetic Field Interaction:

As the rotating magnetic field is generated in the stator, it interacts with the permanent magnets on the rotor. The interaction between the rotating magnetic field and the permanent magnets causes the rotor to rotate. The controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

6. Continuous Rotation:

Brushless motors achieve continuous rotation by continuously updating the rotor position using the sensors and adjusting the current flow in the stator windings accordingly. The electronic commutation process ensures that the currents are switched at the right time and in the right sequence to maintain the rotation and provide precise control over the motor’s operation.

By using electronic commutation and precise control over the currents in the stator windings, brushless motors generate motion with high efficiency, reliability, and accuracy. They offer advantages such as higher speed capabilities, smoother operation, reduced maintenance requirements, and improved overall performance compared to brushed motors. These characteristics make brushless motors widely used in various applications, ranging from small consumer electronics to large industrial machinery.

China Best Sales Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W   vacuum pump oil	China Best Sales Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W   vacuum pump oil
editor by CX 2024-05-09

China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W vacuum pump and compressor

Product Description

Brushed or Brushless DC Motors, Customized Specifications, OEM/ODM

Option for :
Customized shaft, performance, voltage, mounting, lead wires..

Option for :
Electric Brake, Planetary Gearbox, Worm Gearbox, Encoder, Controller Integrated

1. BRUSHED DC MOTOR :

Voltage 12v, 24v, 36v, 48v, upto 310vdc

power 5w  to 1000w

speed 1pm upto 10000rpm 

Dia. 30mm, 32mm, 36mm, 38mm, 42mm, 52mm, 54mm, 63mm, 70mm, 76mm, 80mm, 90mm, 110mm

Belows are some typical models,

2. BRUSHLESS DC MOTOR :
 

Voltage 12v, 24v, 36v, 48v, upto 380vdc

power 5w  to 2000w

speed 1pm upto 15000rpm 

Size 28mm, 30mm, 36mm, 42mm, 57mm, 60mm, 63mm, 70mm, 80mm, 86mm, 110mm

Bearing High quality ball bearing
Poles  4- poles 8-poles 12-poles
Protection class IP40 IP55 option
Insulation class class: F

Belows are some typical models,

Below are only some typical models for reference.

63ZYT Series Permanent magnet Brushed Dc Motors

57HBL Series Brushless Dc Motors

56JXE300K. 63ZYT Series Dc Planetary Gear Motor

56JXE300K. 57HBL Series Brushless Dc Planetary Gear Motor

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Machine, Robot
Operating Speed: Constant Speed
Excitation Mode: Pm
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W   vacuum pump and compressor	China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W   vacuum pump and compressor
editor by CX 2024-05-09

China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower vacuum pump booster

Product Description

NEMA 57 86mm Brushless BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V Dc Servo Motor for Lawn Mower
 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

Planetary Gearbox Type:

Detailed Photos

                                       Cnc Motor Kits                                                                                       Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

What is the significance of commutation in brushless motor operation, and how is it achieved?

Commutation is a critical aspect of brushless motor operation as it determines the timing and sequence of current flow in the motor windings. It is the process by which the motor’s magnetic field is switched to generate continuous rotation. The significance of commutation lies in its ability to maintain proper alignment between the magnetic field produced by the stator and the rotor’s permanent magnets, resulting in smooth and efficient motor operation. Here’s a detailed explanation of the significance of commutation in brushless motor operation and how it is achieved:

1. Magnetic Field Alignment: Commutation ensures that the magnetic field produced by the motor’s stator windings is properly aligned with the permanent magnets on the rotor. This alignment is crucial for generating the necessary torque to drive the rotor and produce rotation. By switching the current flow in the motor windings at the right time and in the right sequence, commutation ensures that the stator’s magnetic field interacts effectively with the rotor’s magnets, producing continuous and smooth rotation.

2. Efficient Power Conversion: Commutation plays a vital role in efficient power conversion within the brushless motor. As the current flows through the motor windings, commutation switches the current path to maintain the desired direction of rotation. By timely switching the current flow, commutation minimizes power losses and maximizes the energy transfer between the power supply and the motor. This efficient power conversion results in improved motor performance, higher energy efficiency, and reduced heat generation.

3. Elimination of Brushes and Commutators: Unlike brushed motors that rely on mechanical brushes and commutators for current switching, brushless motors achieve commutation electronically. This eliminates the need for brushes and commutators, which are prone to wear, friction, and electrical arcing. By replacing these mechanical components with solid-state electronic commutation, brushless motors offer several advantages, including reduced maintenance requirements, longer lifespan, and improved reliability.

4. Precise Speed Control: Commutation in brushless motors enables precise speed control. By accurately timing and sequencing the current flow in the motor windings, the control system of a brushless motor can regulate the motor’s rotational speed. This precise speed control is crucial in applications that require specific speed requirements, such as robotics, electric vehicles, and industrial automation.

5. Commutation Methods: Brushless motors achieve commutation through various methods, the most common being sensor-based commutation and sensorless commutation. Sensor-based commutation utilizes position sensors, such as Hall effect sensors or encoders, to detect the rotor’s position and determine the appropriate timing and sequence of current switching. Sensorless commutation, on the other hand, estimates the rotor position based on the back electromotive force (EMF) generated in the motor windings. Advanced control algorithms and signal processing techniques are employed to accurately estimate the rotor position and achieve precise commutation without the need for additional sensors.

In summary, commutation is of significant importance in brushless motor operation. It ensures proper alignment of the magnetic fields, enables efficient power conversion, eliminates mechanical wear components, allows for precise speed control, and contributes to the overall performance and reliability of brushless motors. Through sensor-based or sensorless commutation methods, brushless motors achieve accurate and timely switching of current flow, resulting in smooth rotation and optimal motor performance.

brushless motor

What are the primary advantages of using brushless motors in various applications?

Brushless motors offer several advantages that make them preferred choices in various applications. Here are the primary advantages of using brushless motors:

1. High Efficiency:

Brushless motors are known for their high efficiency. The absence of brushes and commutators reduces friction and electrical losses, resulting in improved power conversion and energy efficiency. This efficiency translates into lower power consumption, reduced heat generation, and longer battery life in battery-powered applications. High efficiency makes brushless motors suitable for applications where energy efficiency is crucial, such as electric vehicles, renewable energy systems, and battery-operated devices.

2. Increased Reliability:

Brushless motors offer increased reliability compared to brushed motors. The lack of brushes and commutators eliminates common points of failure in brushed motors. Brushes can wear out and require periodic replacement, while commutators can experience electrical arcing and wear. By removing these components, brushless motors have longer lifespans, reduced maintenance requirements, and higher overall reliability. This advantage is particularly important in critical applications where downtime and maintenance costs must be minimized.

3. Precise Speed and Position Control:

Brushless motors provide precise speed and position control, making them suitable for applications that require accurate motion control. The electronic commutation in brushless motors allows for precise monitoring and adjustment of motor parameters, such as speed, torque, and direction. This level of control enables smooth and precise movements, making brushless motors ideal for robotics, CNC machines, automation systems, and other applications that demand precise positioning and motion control.

4. Compact Size and High Power Density:

Brushless motors have a compact design and high power density, making them suitable for applications where space is limited. The absence of brushes and commutators allows for a more streamlined motor design, reducing the overall size and weight of the motor. This compact size makes brushless motors ideal for applications with size constraints, such as drones, portable devices, and small appliances. Despite their compact size, brushless motors can deliver high power output, making them capable of driving demanding applications.

5. Reduced Electromagnetic Interference (EMI):

Brushless motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless motors produces smoother and more controlled current waveforms, resulting in reduced EMI. This advantage is particularly important in applications where EMI can interfere with sensitive electronics or cause electromagnetic compatibility (EMC) issues. Brushless motors are commonly used in medical equipment, telecommunications, and audio/video equipment, where minimizing EMI is critical.

6. Higher Speed and Acceleration Capability:

Brushless motors offer higher speed and acceleration capabilities compared to brushed motors. The absence of brushes reduces friction and allows brushless motors to achieve higher rotational speeds. Additionally, the electronic commutation enables faster switching and control, resulting in faster acceleration and deceleration. These characteristics make brushless motors suitable for applications that require rapid movements, high-speed operation, and quick response times, such as robotics, industrial automation, and electric vehicles.

These advantages make brushless motors a preferred choice in a wide range of applications, including robotics, electric vehicles, aerospace, industrial automation, medical equipment, consumer electronics, and more. Their high efficiency, reliability, precise control, compact size, reduced EMI, and high-speed capabilities contribute to improved performance and enable innovative designs in various industries.

China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   vacuum pump booster	China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   vacuum pump booster
editor by CX 2024-05-08

China Best Sales 42 57 60 86mm 12V 24V 36V 48V Brushless Geared DC Motor Power 110W-660W BLDC Motor Option with Integrated Brake /Driver /Encoder /Gearbox Electric Motor with Great quality

Product Description

mm 12V 24V 36V 48V Brushless Geared DC Motor Power 110W-660W BLDC Motor Option with Integrated Brake /Driver /Encoder /Gearbox Electric Motor
 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

Planetary Gearbox Parameters:

Suitable brushless dc motor shaft
Motor Shaft Pinion Specifications
Module 1
No. of teeth 12 13 22
Pressure angle 20°
Hole diameter 10 teeth pinion Φ7H7 Φ8H7
Reduction ratio 1/6.6  1/23  1/26  1/37  1/92  1/138 1/5.31  1/19  1/30  1/74  1/111 1/3.55  1/13  1/50

 

Gearbox Specifications:
Reduction ratio Exact reduction ratio Rated tolerance torque Max momentary tolerance torque Efficiency L (mm) Weight (g)
1/3.55  1/5.31  1/6.6 1/3.55  1/5.31  1/6.6 8 N.m Max 12 N.m 0.9 55.7±0.5 1100
1/13  1/19  1/23 1/12.57  1/18.82  1/23.4 30 N.m Max 45 N.m 81% 72.2±0.5 1500
1/26  1/30  1/37 1/26.05  1/30.08  1/37.4 60 N.m Max 90 N.m 0.73 72.2±0.5 1500
1/50  1/74  1/92  1/111  1/138 1/49.62  1/74.28  1/92.37  1/111.2  1/138.28 80 N.m Max 120 N.m 66% 88.5±0.5 1880
Input & output same rotation direction; Motor Max. input speed: <4000rpm; Operating temperature range: -15ºC ~ +80ºC

High Precision Planetary Gearbox Parameters:

Gearbox Electrical Specification:
Stage One stage Two stage Three stage
Ratio 3,4,5,8,10 12,15,16,20,25,32,40,64,100 64,80,100,120,125,160,200,256,320,512,1000
Length (mm) L2 L3 L2 L3 L2 L3
153 65 177 89 201 113
Max.Input Rpm (Rpm) 6000 6000 6000
Max.Radial load (N) 550 550 550
Max.Shaft axial load (N) 500 500 500
Efficiency (%) 96 94 90
Backlash arcmin (arcmin) ≤8 ≤10 ≤12
Noise (dB) ≤60 ≤60 ≤60
Weight (Kg) 3.2 3.9 4.8
Average usefui life (h) >10000
Lubricating system Long-term
Rotation direction Input/Output syntropy
Protection level IP65

 

Ratio Rated output torque(N.m) Max. output torque(N.m) Inertia (Kg.cm2)
3 55 110 0.77
4 100 200 0.52
5 98 190 0.45
8 80 160 0.42
10 50 100 0.39
12 106 212 0.39
15 100 200 0.71
16 106 212 0.5
20 106 212 0.44
25 100 200 0.44
32 106 212 0.5
40 106 212 0.39
64 90 120 0.42
100 60 120 0.44
64 125 250 0.39
80 125 250 0.5
100 125 250 0.44
120 110 220 0.39
125 110 220 0.39
160 125 250 0.39
200 125 250 0.39
256 125 250 0.39
320 110 220 0.39
512 100 100 0.39
1000 65 130 0.39

 

Planetary Gearbox Type:

 

 

Other Brushless Dc Motor

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

 

Detailed Photos

                                       Cnc Motor Kits                                                                                       Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Function: Control, Driving, Integrated Driver
Samples:
US$ 35/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

What is a brushless motor, and how does it differ from traditional brushed motors?

A brushless motor is an electric motor that operates without the use of brushes and a commutator, unlike traditional brushed motors. Brushless motors rely on electronic commutation to control the power distribution to the motor’s windings, resulting in improved efficiency, reliability, and performance. Here are the key differences between brushless motors and traditional brushed motors:

1. Construction:

Brushed motors consist of a rotor (armature) and a stator. The rotor contains permanent magnets, and the stator consists of electromagnets. Brushes and a commutator are used to transfer power to the rotor and control the direction of current flow. In contrast, brushless motors have a stationary stator with windings and a rotor that contains permanent magnets. The power is supplied to the stator windings through an external controller that electronically commutates the motor.

2. Commutation:

In brushed motors, commutation is achieved mechanically through the brushes and commutator. The brushes make physical contact with the commutator, which switches the direction of current flow in the rotor windings as the motor rotates. This mechanical commutation causes friction, wear, and electrical arcing, leading to inefficiencies and limited lifespan. Brushless motors, on the other hand, employ electronic commutation. Sensors or Hall effect devices detect the rotor position, and the external controller determines the appropriate timing and sequence of current flow in the stator windings, eliminating the need for brushes and commutation mechanisms.

3. Efficiency:

Brushless motors are generally more efficient than brushed motors. The absence of brushes and commutator reduces friction and electrical losses, resulting in higher efficiency and improved power conversion. Brushed motors experience energy losses due to brush contact resistance and electrical arcing, which can reduce overall efficiency. Brushless motors can achieve efficiency levels of over 90%, while brushed motors typically have efficiencies ranging from 75% to 85%.

4. Maintenance:

Brushless motors require less maintenance compared to brushed motors. The brushes in brushed motors wear over time and need periodic replacement. Additionally, the commutator may require cleaning or resurfacing. In contrast, brushless motors have no brushes or commutator, eliminating the need for brush replacement and commutator maintenance. This makes brushless motors more reliable and reduces downtime and maintenance costs.

5. Lifespan:

The lifespan of brushless motors is generally longer than that of brushed motors. The absence of brushes and commutator reduces wear and electrical arcing, which are common causes of failure in brushed motors. Brushless motors can operate for thousands of hours without requiring major maintenance, while brushed motors typically have a shorter lifespan due to brush and commutator wear.

6. Control and Performance:

Brushless motors offer more precise control and better performance compared to brushed motors. The electronic commutation in brushless motors allows for finer control of the motor’s speed, torque, and direction. The external controller can adjust the motor’s parameters dynamically, enabling smoother operation and better responsiveness. Brushless motors also have higher torque-to-weight ratios, faster acceleration, and lower inertia, making them suitable for applications requiring high-performance and precise motion control.

These differences make brushless motors advantageous in many applications where efficiency, reliability, and precise control are crucial. They are commonly used in industries such as robotics, aerospace, electric vehicles, and industrial automation, where high-performance and long-lasting motors are required.

China Best Sales 42 57 60 86mm 12V 24V 36V 48V Brushless Geared DC Motor Power 110W-660W BLDC Motor Option with Integrated Brake /Driver /Encoder /Gearbox Electric Motor   with Great quality China Best Sales 42 57 60 86mm 12V 24V 36V 48V Brushless Geared DC Motor Power 110W-660W BLDC Motor Option with Integrated Brake /Driver /Encoder /Gearbox Electric Motor   with Great quality
editor by CX 2024-04-30

China best CHINAMFG DC 12V 24V 110V 220V 10W-400W Mciro Brushless Worm Gear Reduction Motor with Brake Electric Motor Manufacturer with high quality

Product Description

 

Model Selection

TaiBang Motor has a wide range of micro motor production lines in the industry, including induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motoretc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc and are the preferred and matched product for automatic machine. 

Brushless DC motor is made up of motor and driver, which is a kind of typical product of mechanical and electrical integration.
It is highly regarded by market as its small volume, low noise, high efficiency, wide range of speed control and steady working state with less inaccuracy. The product is widely used in transmission equipment, textile machinery and medical devices, etc.
 

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request
If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.

• On Your Need
We can modify standard products or customize them to meet your specific needs.

 

Motor Model Instruction

G6BLD300-48GN-18S

G 2 BLD 15 24 GN 18S
Factory Code Frame Size Motor Type Output Power Power Voltage Motor Shaft Type Motor Speed
GPG Motor Mounting Flange:
60mm,70mm,80mm,
90mm,100mm,ø45,ø60
BLD:Brushless Motor With Square Gearhead

BLDP:Brushless Motor With Planetary Gearhead
 

10:10W
15:15W
25:25W
40:40W
60:60W
90:90W
200:200W
400:400W
24:DC24V
36:DC36V
48:DC48V
110:DC110V
220:DC220V
GN:General Bevel Gear

GU:Reinforced Bevel Gear

A1:Milling Keyway

A:Flat type

15S:1500RPM
18S:1800RPM
25S:2500RPM
30S:3000RPM

 

Gearhead Model Instruction

6GN-100K

6 GN 100 K
Dimension Gear Type Reduction Ratio Bearing type
2:60mm
3:70mm
4:80mm
5:90mm
6:104mm
GN:General Bevel Gear

GU:Reinforced Bevel Gear

GFS:L type hollow shaft gearbox
 

1:100 Ball Bearinig

 

Motor Type Gearhead Type Gear Ratio
G6BLD300-24GN

G6BLD300-36GN

G6BLD300-48GN

6GFS(   )K 1:3~1:20
1:25~1:180

Company Profile
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited
Samples:
US$ 21/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Are there advancements or innovations in brushless motor technology worth noting?

Yes, there have been significant advancements and innovations in brushless motor technology that are worth noting. These advancements have led to improved performance, efficiency, and versatility of brushless motors across various industries. Here’s a detailed explanation of some notable advancements:

1. High-Efficiency Designs:

Advancements in brushless motor design have led to increased efficiency. Motor manufacturers have focused on optimizing the motor’s electromagnetic design, reducing internal power losses, and improving overall energy conversion efficiency. This has resulted in brushless motors with higher power density, improved torque-to-weight ratios, and reduced energy consumption. These high-efficiency designs have found applications in sectors such as electric vehicles, renewable energy systems, and industrial automation, where energy efficiency is crucial.

2. Advanced Control Techniques:

The development of advanced control techniques has greatly enhanced the performance and functionality of brushless motors. Motor control algorithms, such as sensorless control and field-oriented control (FOC), enable precise control of motor speed, torque, and position. These techniques make brushless motors more responsive, efficient, and capable of delivering smooth and precise motion control. Advanced control techniques have revolutionized applications such as robotics, drones, CNC machines, and electric propulsion systems.

3. Integrated Electronics:

Advancements in electronics integration have led to the development of brushless motors with integrated control electronics. These motors, often referred to as “smart” or “intelligent” motors, incorporate built-in motor controllers, sensors, and communication interfaces. The integration of electronics simplifies motor installation, reduces wiring complexity, and enables seamless integration with control systems. Smart brushless motors find applications in automation, robotics, and Internet of Things (IoT) devices, where compactness, ease of use, and connectivity are essential.

4. Sensor Technology:

New sensor technologies have emerged to enhance the performance and reliability of brushless motors. Hall effect sensors and encoders are commonly used in brushless motors to provide feedback on rotor position, enabling precise control and commutation. Recent advancements in sensor technologies have led to the development of more compact, accurate, and durable sensors. Additionally, the integration of sensorless control methods, which rely on motor voltage and current measurements, has eliminated the need for position sensors in some applications, reducing cost and complexity.

5. Materials and Manufacturing:

Advancements in materials and manufacturing techniques have contributed to the improvement of brushless motor performance. The use of high-performance magnet materials, such as neodymium magnets, has increased motor power density and efficiency. Advanced manufacturing processes, such as precision machining and automated assembly, have improved the consistency and quality of brushless motors. Additionally, advancements in thermal management techniques and materials have enabled brushless motors to operate at higher temperatures, expanding their suitability for demanding environments.

6. Miniaturization and Integration:

Brushless motors have seen advancements in miniaturization and integration, allowing for compact and versatile designs. Miniature brushless motors are now available in smaller form factors, making them suitable for applications with limited space, such as medical devices, drones, and consumer electronics. Furthermore, the integration of multiple motors within a single housing, known as multi-axis or multi-DOF systems, has enabled complex motion control and robotics applications, including robotic arms and articulated mechanisms.

7. Application-Specific Customization:

Advancements in brushless motor technology have also facilitated application-specific customization. Motor manufacturers are increasingly offering customization options to meet the specific needs and requirements of various industries. This includes tailoring motor designs, winding configurations, cooling systems, and control parameters to optimize performance and efficiency for specific applications. Customization allows for better integration, improved performance, and enhanced reliability in diverse industries such as aerospace, automotive, and industrial automation.

In summary, advancements and innovations in brushless motor technology have resulted in higher efficiency designs, advanced control techniques, integrated electronics, improved sensor technology, enhanced materials and manufacturing processes, miniaturization and integration, as well as application-specific customization. These advancements have expanded the capabilities and applications of brushless motors, making them indispensable in numerous industries, ranging from automotive and robotics to renewable energy and consumer electronics.

brushless motor

What types of sensors are commonly used in brushless motors for feedback and control?

In brushless motors, various types of sensors are commonly used for feedback and control purposes. These sensors provide essential data to monitor and control the motor’s position, speed, and other parameters. Here are some of the commonly used sensors in brushless motors:

1. Hall Effect Sensors:

Hall effect sensors are widely used in brushless motors for commutation control. Typically, three Hall effect sensors are positioned around the motor’s stator to detect the position of the rotor’s permanent magnets. By sensing the magnetic field changes, the Hall effect sensors determine the rotor’s position relative to the stator. This information is crucial for the motor’s electronic controller to apply the correct current to the motor’s windings and ensure proper commutation.

2. Encoder Sensors:

Encoders are commonly employed in brushless motors for precise position control. There are two main types of encoders used: optical encoders and magnetic encoders. Optical encoders use an optical disc with patterns and a light-emitting diode (LED) and photodetector to detect the rotation of the motor’s shaft. Magnetic encoders, on the other hand, utilize magnetic fields and sensors to measure the shaft’s position. Encoders provide high-resolution position feedback and enable accurate closed-loop control of the motor’s position.

3. Resolver Sensors:

Resolvers are another type of position sensor used in brushless motors. They consist of a rotor and a stator with windings. As the rotor rotates, the resolver measures the angular position by detecting the voltages induced in the stator windings. Resolvers are known for their durability and resistance to harsh environmental conditions, making them suitable for various industrial applications.

4. Current Sensors:

Current sensors are used to measure the current flowing through the motor’s windings. They provide feedback on the motor’s electrical load and enable monitoring of the motor’s torque output. Current sensors can be based on different principles, such as Hall effect, shunt resistors, or current transformers. By measuring the motor’s current, the control system can adjust the motor’s performance and protect it from overcurrent conditions.

5. Temperature Sensors:

Temperature sensors are utilized to monitor the motor’s temperature and prevent overheating. These sensors can be thermocouples, thermistors, or integrated temperature sensors. By continuously monitoring the motor’s temperature, the control system can adjust the motor’s operation, activate cooling mechanisms, or trigger alarms and shutdowns if the temperature exceeds safe limits.

6. Speed Sensors:

Speed sensors are employed to measure the rotational speed of the motor. They provide feedback on the motor’s speed and enable closed-loop speed control. Speed sensors can be optical or magnetic, relying on the detection of changes in position or magnetic field patterns to determine the motor’s speed.

The specific combination and utilization of these sensors depend on the motor’s design, control system requirements, and application needs. By using these sensors, brushless motors can achieve precise control, accurate position feedback, and efficient operation, making them suitable for a wide range of applications in industries such as automotive, robotics, aerospace, and industrial automation.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China best CHINAMFG DC 12V 24V 110V 220V 10W-400W Mciro Brushless Worm Gear Reduction Motor with Brake Electric Motor Manufacturer   with high quality China best CHINAMFG DC 12V 24V 110V 220V 10W-400W Mciro Brushless Worm Gear Reduction Motor with Brake Electric Motor Manufacturer   with high quality
editor by CX 2024-04-30

China wholesaler High Torque Electric Servo Motor 24V 12V 48V Outboard Boat BLDC Brushless DC Motor with Brake/Reducer/Encoder/Handwheel/ Hall Sensor for Uav Model Airplane Fan vacuum pump booster

Product Description

42BLH DC Brushless Motor

We are a company specializing in the R&D, production and sales of brushless motors, stepper motors, DC motors.  Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

Product Description

 
42BLH DC Brushless Motor:

Projects Specifications
Winding Type Star
Hall Effect Angle 120° electrical angle
Shaft Axial Play 0.571mm
Ambient Temperature -20~ + 50°C
Ambient Humidity <80%
Max. Radial Force 28N@20mm from the flange
Max. Axial Force 10N
Insulation Class Class B
Dielectric Strength one minute@500VAC
Insulation Resistance 100MΩMin.@500VDC

 42BLH DC Brushless Motor Parameters:

Model Rated Voltage Rated Torque Rated Speed Rated Current Rated Power Peak Torque Torque Constant Body Length Weight
  VDC N.M RPM A W N.M N.M/A MM KG
42BLH50-230 24 0.1 3000 1.8 31 0.3 0.056 50 0.35
42BLH50-215 24 0.1 1500 0.9 15 0.3 0.11 50 0.35
42BLH70-230 24 0.2 3000 3.4 62 0.6 0.056 70 0.55
42BLH70-215 24 0.2 1500 1.8 31 0.6 0.11 70 0.55
42BLH90-230 24 0.3 3000 5.2 94 0.9 0.056 90 0.65
42BLH90-215 24 0.3 1500 2.6 47 0.9 0.11 90 0.65

Note:Brake, reducer, encoder, handwheel and other devices can be installed.
         Please feel free to contact us for more details.

Detailed Photos

  42BLH DC Brushless Motor Photos:

Our Service:
1). General Service:

Quick Reply

All enquiry or email be replied in 12 hours, no delay for your business.

Professional Team

Questions about products will be replied professionally, exactly, best advice to you.

Short Lead time

Sample or small order sent in 7-15 days, bulk or customized order about 30 days.

Payment Choice

T/T, Western Union,, L/C, etc, easy for your business.

Before shipment

Take photos, send to customers for confirmation. Only confirmed, can be shipped out.

Language Choice

Besides English, you can use your own language by email, then we can translate it.

2). Customization Service:

Motor specification(no-load speed , voltage, torque , diameter, noise, life, testing) and shaft length can be tailor-made according to customer’s requirements.

 

Other Product Parameters

 42BL DC Brushless Motor Parameters:

Model Rated Voltage Rated Torque Rated Speed Rated Current Rated Power Peak Torque Torque Constant Body Length Weight
  VDC N.M RPM A W N.M N.M/A MM KG
42BL50-240 24 0.08 4000 1.9 33 0.24 0.042 50 0.3
42BL50-260 24 0.08 6000 2.8 50 0.24 0.571 50 0.3
42BL60-240 24 0.12 4000 2.8 50 0.36 0.042 60 0.4
42BL60-260 24 0.12 6000 4.2 75 0.36 0.571 60 0.4
42BL70-240 24 0.11 4000 2.6 46 0.33 0.042 70 0.5
42BL70-260 24 0.11 6000 4 70 0.33 0.571 70 0.5
42BL90-240 24 0.14 4000 3.3 59 0.42 0.042 90 0.7
42BL90-260 24 0.14 6000 5 90 0.42 0.571 90 0.7

57BL Series  brushless DC motor Parameters:

Model Rated Voltage Rated Torque Rated Speed Rated Current Rated Power Peak Torque Torque Constant Body Length Weight
  VDC N.M RPM A W N.M N.M/A MM KG
57BL60-230 24 0.2 3000 3.5 62 0.6 0.057 60 0.6
57BL60-215 24 0.2 1500 1.7 31 0.6 0.118 60 0.6
57BL80-230 24 0.4 3000 7 126 1.2 0.057 81 1
57BL80-215 24 0.4 1500 3.5 62 1.2 0.114 81 1
57BL100-230 24 0.6 3000 10.4 188 1.8 0.057 102 1.4
57BL100-215 24 0.6 1500 5.2 94 1.8 0.115 102 1.4

57BLY Series brushless DC motor Parameters:

Model Rated Voltage Rated Torque Rated Speed Rated Current Rated Power Peak Torque Torque Constant Body Length Weight
  VDC N.M RPM A W N.M N.M/A MM KG
57BLY 55-230 24 0.16 3000 2.8 50 0.48 0.057 55 0.46
57BLY 55-460 48 0.16 6000 2.8 100 0.48 0.057 55 0.46
57BLY 75-230 24 0.32 3000 5.6 100 0.96 0.057 75 0.75
57BLY 75-460 48 0.32 6000 5.6 200 0.96 0.057 75 0.75
57BLY 95-230 24 0.48 3000 8.4 150 1.44 0.057 95 1
57BLY 95-460 48 0.48 6000 8.4 300 1.44 0.057 95 1
57BLY 115-230 24 0.64 3000 11.2 200 1.92 0.057 115 1.2
57BLY 115-460 48 0.64 6000 11.2 400 1.92 0.057 115 1.2

60BL Series brushless DC motor  Parameters:

Model Rated Voltage Rated Torque Rated Speed Rated Current Rated Power Peak Torque Torque Constant Body Length Weight
  VDC N.M RPM A W N.M N.M/A MM KG
60BL80-230 24 0.32 3000 5.6 100 0.96 0.057 77 0.85
60BL80-215 24 0.32 1500 2.8 50 0.96 0.114 77 0.85
60BL100-230 24 0.64 3000 11.1 200 1.92 0.057 98 1.25
60BL100-215 24 0.64 1500 5.6 100 1.92 0.114 98 1.25
60BL120-430 48 0.96 3000 8.3 300 2.88 0.115 119 1.7
60BL120-415 48 0.96 1500 4.2 150 2.88 0.228 119 1.7
60BL140-430 48 1.28 3000 11.1 400 3.84 0.115 140 2.1
60BL140-415 48 1.28 1500 5.6 200 3.84 0.228 140 2.1

80BL Series DC brushless motor  Parameters:

Model Rated Voltage Rated Torque Rated Speed Rated Current Rated Power Peak Torque Torque Constant Body Length Weight
  VDC N.M RPM A W 1.2 N.M/A MM KG
80BL80-430 48 0.4 3000 3.5 126 1.2 0.114 80 2
80BL80-415 48 0.4 1500 1.8 63 2.4 0.232 80 2
80BL100-430 48 0.8 3000 7 251 2.4 0.114 100 2.4
80BL100-415 48 0.8 1500 3.5 126 4.2 0.23 100 2.4
80BL120-430 48 1.2 3000 10.5 377 3.6 0.114 120 2.8
80BL120-415 48 1.2 1500 5.2 188 3.6 0.23 120 2.8
80BL140-630 310 1.6 3000 2.2 502 4.8 0.73 140 3.2
80BL140-415 48 1.6 1500 7 251 4.8 0.23 140 3.2

 86BL Series DC brushless motor  Parameters:

Model Rated Voltage Rated Torque Rated Speed Rated Current Rated Power Peak Torque Torque Constant Body Length Weight
  VDC N.M RPM A W N.M N.M/A MM KG
86BL90-430 48 0.7 3000 6.1 220 2.1 0.115 90 1.8
86BL90-415 48 0.7 1500 3 110 2.1 0.233 90 1.8
86BL115-430 48 1.4 3000 12.2 440 4.2 0.115 115 2.6
86BL115-415 48 1.4 1500 6.1 220 4.2 0.23 115 2.6
86BL140-630 310 2.1 3000 2.8 660 6.3 0.75 140 4
86BL140-615 310 2.1 1500 1.4 330 6.3 1.5 140 4

Application Area

Product Recommendation

Stepper motor Brushless motor Synchronous motor

                

Company Profile

HangZhou Sino-pan Electric Co., Ltd. is an export-oriented enterprise. Located in Xihu (West Lake) Dis. District, HangZhou City, ZheJiang Province, China. After years of operation, the scale of our enterprise has continued to expand. Gradually grow into a group company. At present, our company mainly produces automotive bulbs (such as halogen bulbs and automotive LED bulbs/as well as household LEDs and commercial LEDs), motors (brushless motors/stepping motors/synchronous motors/asynchronous motors). At the same time, we are also appointed by many clients as purchasing and quality inspection agents in China.

We provide you with high-quality, fast, efficient and inexpensive automotive lighting, motors and auxiliary electrical services. Zhongpan welcomes your patronage with a sHangZhou, and we will provide you with a variety of satisfactory products and a full range of consulting services. We firmly believe that the cooperation with us will be infinitely better! Strive to create a stronger tomorrow for our customers!

 

 

Packaging & Shipping

 

FAQ

Q1. Can I provide sample orders for your products?
A: Of course, you can check our quality before ordering. If you have any requirements, please contact us.

Q2. What is your delivery time?
A: It depends on the order quantity. Usually, it takes about 3-7 days after receiving the small deposit. Bulk ordering takes 10-20 days.

Q3. What kind of customers and what kind of companies do you work with?
A: We have 20 years of export experience and serve more than 100 customers, such as retailers, wholesalers, and online store owners.

Q4. Is it possible to put our logo on your product or product packaging?
A: Of course, we have a factory, welcome to customize your brand, LOGO, color, product manual, packaging, etc. 

Q5: Can you OEM for me?
A: We accept all OEM orders, just contact us and give me your design. We will provide you with a reasonable price and make samples for you as soon as possible. 

Q6: What are your payment terms?
A: According to T/T, LC AT SIGHT, 30% deposit in advance, and the balance 70% before shipment.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

How do brushless motors compare to brushed motors in terms of lifespan and reliability?

When comparing brushless motors to brushed motors, there are notable differences in terms of lifespan and reliability. Here’s a detailed explanation of how brushless motors compare to brushed motors in these aspects:

1. Lifespan:

Brushed motors typically have a shorter lifespan compared to brushless motors. This is primarily due to the mechanical wear and tear associated with brushed motors. In brushed motors, the brushes and commutator make physical contact, causing friction, heat generation, and eventual wear. Over time, the brushes wear down and the commutator may become worn or damaged, leading to degraded motor performance and eventual failure. On the other hand, brushless motors do not have brushes or commutators, eliminating the mechanical wear components. As a result, brushless motors generally have a longer lifespan and can operate for thousands of hours with minimal maintenance.

2. Reliability:

Brushless motors are generally considered more reliable than brushed motors. The absence of brushes and commutators in brushless motors reduces the risk of failure due to mechanical wear and associated issues like brush sparking and arcing. The elimination of these moving parts also leads to reduced friction, less heat generation, and lower chances of electrical or mechanical failures. Additionally, brushless motors often benefit from advanced control systems that can monitor and protect against various operating conditions, enhancing their overall reliability.

3. Operating Conditions:

Brushless motors are better suited for demanding operating conditions compared to brushed motors. The absence of brushes and commutators in brushless motors means there are no physical contacts that can generate sparks or cause electrical arcing. This makes brushless motors more suitable for applications where sparks or electrical noise can be problematic, such as in explosive or sensitive electronic environments. Furthermore, brushless motors can operate at higher speeds and handle higher torque loads than brushed motors, making them more versatile in a wide range of applications.

4. Maintenance:

Brushless motors generally require less maintenance compared to brushed motors. Brushed motors often require periodic maintenance to replace worn-out brushes and address commutator issues. Additionally, the presence of brushes can lead to carbon dust buildup, requiring regular cleaning and maintenance. In contrast, brushless motors have no brushes or commutators to replace or clean, significantly reducing the maintenance requirements. However, it’s important to note that brushless motors may still require periodic inspections, especially for cooling systems or bearings, to ensure optimal performance and reliability.

5. Efficiency:

Brushless motors are typically more efficient than brushed motors. The absence of brushes and commutators in brushless motors reduces energy losses associated with friction and electrical resistance. This improved efficiency results in several benefits, such as reduced power consumption, longer battery life (in battery-powered applications), and less heat generation. Brushless motors are known for their high power-to-weight ratio and can deliver higher torque output per unit of input power compared to brushed motors.

In summary, brushless motors generally offer a longer lifespan and higher reliability compared to brushed motors. The absence of brushes and commutators reduces mechanical wear and associated failures, making brushless motors more durable. They are better suited for demanding operating conditions, require less maintenance, and offer improved efficiency. These factors have made brushless motors increasingly popular in various applications, including robotics, electric vehicles, industrial automation, and aerospace, where reliability and longevity are essential.

brushless motor

How does the absence of brushes impact the maintenance requirements of brushless motors?

The absence of brushes in brushless motors has a significant impact on their maintenance requirements. Here’s how the absence of brushes affects the maintenance of brushless motors:

1. Reduced Wear and Tear:

One of the primary advantages of brushless motors is that they do not have brushes that make physical contact with the commutator. In brushed motors, the brushes wear down over time, leading to brush replacement or repair. The absence of brushes in brushless motors eliminates this wear and tear, resulting in reduced maintenance needs. Brushless motors can operate for longer periods without the need for brush replacement or maintenance related to brush wear.

2. Decreased Risk of Brush Failure:

Brushes in brushed motors are subject to wear, heat, and carbon dust accumulation, which can lead to brush failure or arcing. Brush failure can cause motor performance issues, increased electrical noise, and even motor damage. Brushless motors, on the other hand, do not have brushes that can fail. The absence of brushes reduces the risk of brush-related failures, minimizing the need for maintenance and repair associated with brush replacement or troubleshooting brush-related issues.

3. Improved Reliability and Durability:

The elimination of brushes in brushless motors improves their overall reliability and durability. Without brushes, there is no physical contact or friction that can cause wear, heat generation, or electrical resistance. This results in a more robust motor design with fewer components prone to failure. Brushless motors are known for their long service life and high reliability, requiring minimal maintenance to keep them operational.

4. Simplified Maintenance Procedures:

Brushless motors typically require less maintenance compared to brushed motors. The absence of brushes simplifies maintenance procedures since there is no need to inspect, clean, or replace brushes. Routine maintenance for brushless motors usually involves checking the motor’s connections, ensuring proper cooling, and verifying the integrity of the electronic components and wiring. These maintenance tasks are generally less frequent and less labor-intensive compared to maintaining brushed motors.

5. Potential Cost Savings:

The reduced maintenance requirements of brushless motors can result in cost savings over their lifetime. With fewer maintenance tasks and a longer service life, the overall maintenance and repair costs associated with brushless motors are typically lower compared to brushed motors. The reduced need for brush replacement, brush inspections, and related troubleshooting can contribute to cost savings and improved operational efficiency.

In summary, the absence of brushes in brushless motors significantly impacts their maintenance requirements. The elimination of brushes reduces wear and tear, decreases the risk of brush failure, improves reliability and durability, simplifies maintenance procedures, and can potentially lead to cost savings. These advantages make brushless motors an attractive choice in applications where low maintenance and long service life are essential, such as in electric vehicles, industrial automation, and other systems that require reliable and efficient motion control.

brushless motor

In which industries are brushless motors commonly employed, and what are their key roles?

Brushless motors find applications in a wide range of industries, thanks to their numerous advantages and capabilities. Here are some of the industries where brushless motors are commonly employed and their key roles:

1. Automotive Industry:

In the automotive industry, brushless motors are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They play a crucial role in providing propulsion for these vehicles, driving the wheels and ensuring efficient power delivery. Brushless motors offer high efficiency, precise control, and fast acceleration, making them ideal for electric drivetrains. Additionally, they are employed in various automotive subsystems such as electric power steering, HVAC systems, cooling fans, and braking systems.

2. Aerospace and Aviation:

Brushless motors have significant applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations. Their high power-to-weight ratio, compact size, and high-speed capabilities make them well-suited for aerospace requirements.

3. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They power robotic arms, joints, and grippers, enabling accurate and controlled movements. Brushless motors offer high torque, precise position control, and rapid acceleration, making them vital for industrial robotics, collaborative robots (cobots), and automated manufacturing processes. Their compact size and efficiency also contribute to the design and performance of robotic systems.

4. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes. Their ability to handle high loads, operate at high speeds, and offer precise control makes them valuable in demanding industrial environments.

5. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of the industries where brushless motors are commonly employed. Their efficiency, reliability, precise control, compact size, and high-performance characteristics make them versatile and valuable in many other sectors as well. As technology continues to advance, brushless motors are likely to find new applications and play increasingly important roles in various industries.

China wholesaler High Torque Electric Servo Motor 24V 12V 48V Outboard Boat BLDC Brushless DC Motor with Brake/Reducer/Encoder/Handwheel/ Hall Sensor for Uav Model Airplane Fan   vacuum pump booster	China wholesaler High Torque Electric Servo Motor 24V 12V 48V Outboard Boat BLDC Brushless DC Motor with Brake/Reducer/Encoder/Handwheel/ Hall Sensor for Uav Model Airplane Fan   vacuum pump booster
editor by CX 2024-04-25

China Professional 80mm 12V 24V 36V 48V High Torque Big Power Brushless DC Motor Customized OEM 1500rpm 2000rpm 3000rpm 4000rpm BLDC Motor Power 100W 200W 300W 400W 500W 800W wholesaler

Product Description

Below are only some typical models.

For more information or a customed motor, Pls contact us.

Option for :
customized shaft, performance, voltage, mounting, lead wires..
Option for:
Electric Brake, Planetary Gearbox, Worm Gearbox, Optical Encoder Integrated

Size 80mm brushless dc motors

Rated Voltage : 24 Volt
Option for 12v 24v 36v 48v 60v 

Bearing High quality ball bearing
Poles 4- poles  8-poles
Protection class IP40 IP55 option
Insulation class class: F

Electric Connections

CONTROLLER INTEGRATED VERSION

Diagram

Drawing

PLANETARY GEARED VERSION

WORM GEARED VERSION

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Function: Driving
Casing Protection: Closed Type
Number of Poles: 8
Structure and Working Principle: Brushless
Customization:
Available

|

brushless motor

Can brushless motors be used in environments with high temperatures or extreme conditions?

Yes, brushless motors can be designed and used in environments with high temperatures or extreme conditions, provided that they are appropriately engineered and equipped with suitable materials and protective measures. Here’s a detailed explanation of the factors to consider and the measures taken to enable brushless motors to operate in such challenging environments:

1. Thermal Management: High temperatures can have detrimental effects on the performance and lifespan of brushless motors. To mitigate these effects, thermal management techniques are employed. This includes the use of efficient heat sinks, cooling fans, or liquid cooling systems to dissipate heat generated during motor operation. Additionally, the motor’s design may incorporate insulation materials that can withstand high temperatures and prevent heat transfer to sensitive components.

2. High-Temperature Materials: Brushless motors intended for use in high-temperature environments are constructed using materials that can withstand the elevated temperatures. This includes the use of high-temperature-resistant magnets, such as samarium cobalt (SmCo) or neodymium iron boron (NdFeB) magnets, which can maintain their magnetic properties at high temperatures. Similarly, the motor’s components, such as the stator, windings, and insulation materials, are selected or treated to withstand the specific temperature requirements.

3. Sealing and Enclosure: Extreme conditions often involve exposure to dust, moisture, or other contaminants that can adversely affect motor performance. To protect brushless motors in such environments, they are typically equipped with robust sealing and enclosure measures. This may include the use of gaskets, O-rings, or specialized seals to prevent the ingress of dust, water, or corrosive substances. In some cases, motors are housed in IP (Ingress Protection) rated enclosures, providing a higher level of protection against environmental factors.

4. Vibration and Shock Resistance: Some extreme environments may subject the motors to high levels of vibration or mechanical shocks. Brushless motors designed for such conditions are engineered to withstand these external forces. They may incorporate features such as reinforced mounting structures, vibration-damping materials, or shock-absorbing mechanisms to ensure reliable operation and prevent damage to internal components.

5. Environmental Testing and Certification: To ensure the suitability of brushless motors for high-temperature or extreme environments, they often undergo rigorous testing and certification processes. These tests may include temperature cycling, humidity testing, thermal shock testing, vibration testing, and ingress protection testing. Compliance with industry standards and certifications, such as UL (Underwriters Laboratories) or IEC (International Electrotechnical Commission) standards, provides assurance of the motor’s reliability and performance in specific environmental conditions.

It’s important to note that the specific temperature and environmental limits of a brushless motor can vary depending on the design, construction, and intended application. Therefore, when considering the use of brushless motors in high-temperature or extreme conditions, it is essential to consult with motor manufacturers or experts who can provide guidance based on the specific requirements and constraints of the intended application.

brushless motor

What types of sensors are commonly used in brushless motors for feedback and control?

In brushless motors, various types of sensors are commonly used for feedback and control purposes. These sensors provide essential data to monitor and control the motor’s position, speed, and other parameters. Here are some of the commonly used sensors in brushless motors:

1. Hall Effect Sensors:

Hall effect sensors are widely used in brushless motors for commutation control. Typically, three Hall effect sensors are positioned around the motor’s stator to detect the position of the rotor’s permanent magnets. By sensing the magnetic field changes, the Hall effect sensors determine the rotor’s position relative to the stator. This information is crucial for the motor’s electronic controller to apply the correct current to the motor’s windings and ensure proper commutation.

2. Encoder Sensors:

Encoders are commonly employed in brushless motors for precise position control. There are two main types of encoders used: optical encoders and magnetic encoders. Optical encoders use an optical disc with patterns and a light-emitting diode (LED) and photodetector to detect the rotation of the motor’s shaft. Magnetic encoders, on the other hand, utilize magnetic fields and sensors to measure the shaft’s position. Encoders provide high-resolution position feedback and enable accurate closed-loop control of the motor’s position.

3. Resolver Sensors:

Resolvers are another type of position sensor used in brushless motors. They consist of a rotor and a stator with windings. As the rotor rotates, the resolver measures the angular position by detecting the voltages induced in the stator windings. Resolvers are known for their durability and resistance to harsh environmental conditions, making them suitable for various industrial applications.

4. Current Sensors:

Current sensors are used to measure the current flowing through the motor’s windings. They provide feedback on the motor’s electrical load and enable monitoring of the motor’s torque output. Current sensors can be based on different principles, such as Hall effect, shunt resistors, or current transformers. By measuring the motor’s current, the control system can adjust the motor’s performance and protect it from overcurrent conditions.

5. Temperature Sensors:

Temperature sensors are utilized to monitor the motor’s temperature and prevent overheating. These sensors can be thermocouples, thermistors, or integrated temperature sensors. By continuously monitoring the motor’s temperature, the control system can adjust the motor’s operation, activate cooling mechanisms, or trigger alarms and shutdowns if the temperature exceeds safe limits.

6. Speed Sensors:

Speed sensors are employed to measure the rotational speed of the motor. They provide feedback on the motor’s speed and enable closed-loop speed control. Speed sensors can be optical or magnetic, relying on the detection of changes in position or magnetic field patterns to determine the motor’s speed.

The specific combination and utilization of these sensors depend on the motor’s design, control system requirements, and application needs. By using these sensors, brushless motors can achieve precise control, accurate position feedback, and efficient operation, making them suitable for a wide range of applications in industries such as automotive, robotics, aerospace, and industrial automation.

brushless motor

How do brushless motors contribute to energy efficiency compared to brushed motors?

Brushless motors offer several key advantages over brushed motors when it comes to energy efficiency. Here’s how brushless motors contribute to energy efficiency compared to brushed motors:

1. Elimination of Brush Friction:

In brushed motors, the brushes make physical contact with the commutator, resulting in friction and wear. This friction causes energy losses in the form of heat. Brushless motors, on the other hand, do not use brushes or commutators. The absence of brush friction significantly reduces energy losses, resulting in improved energy efficiency. The elimination of brush friction allows brushless motors to operate at higher efficiencies and reduces the amount of wasted energy dissipated as heat.

2. Reduced Electrical Resistance:

Brushed motors rely on the brushes and commutator to transfer electrical current to the rotor windings. However, these components introduce electrical resistance, leading to energy losses in the form of voltage drops and heat generation. In brushless motors, electrical current is transferred to the stator windings through electronic commutation, which eliminates the resistance caused by brushes and commutators. The reduced electrical resistance in brushless motors results in higher energy efficiency and minimizes power losses.

3. Improved Power Conversion:

Brushless motors employ electronic commutation, allowing for more precise control of the current flow in the stator windings. This precise control enables optimized power conversion, ensuring that the electrical energy supplied to the motor is efficiently converted into mechanical power. Brushed motors, on the other hand, rely on mechanical commutation, which is less efficient and leads to power losses in the form of sparks and arcing. The improved power conversion in brushless motors contributes to their higher energy efficiency.

4. Regenerative Braking:

Brushless motors have the capability of regenerative braking, which further enhances their energy efficiency. During braking or deceleration, the motor can act as a generator, converting the kinetic energy of the moving load back into electrical energy. This regenerated energy can be fed back into the power source or stored in batteries or capacitors for later use. Regenerative braking reduces energy wastage and improves overall system efficiency by recovering and reusing energy that would otherwise be dissipated as heat in traditional braking systems.

5. Optimal Sizing and Control:

Brushless motors can be designed and controlled to match the specific requirements of the application, resulting in optimal sizing and operation. By selecting the appropriate motor size, torque rating, and control parameters, the motor can operate at its most efficient operating point. This tailored approach ensures that the motor operates with minimal energy losses and maximizes its energy efficiency. In contrast, brushed motors may be oversized or underutilized for certain applications, leading to less efficient operation and higher energy consumption.

Overall, brushless motors offer higher energy efficiency compared to brushed motors due to the elimination of brush friction, reduced electrical resistance, improved power conversion, regenerative braking capabilities, and the ability to optimize motor sizing and control. These energy-saving features make brushless motors a preferred choice in various applications, particularly those that prioritize energy efficiency, such as electric vehicles, renewable energy systems, and battery-powered devices.

China Professional 80mm 12V 24V 36V 48V High Torque Big Power Brushless DC Motor Customized OEM 1500rpm 2000rpm 3000rpm 4000rpm BLDC Motor Power 100W 200W 300W 400W 500W 800W   wholesaler China Professional 80mm 12V 24V 36V 48V High Torque Big Power Brushless DC Motor Customized OEM 1500rpm 2000rpm 3000rpm 4000rpm BLDC Motor Power 100W 200W 300W 400W 500W 800W   wholesaler
editor by CX 2024-04-24

China Best Sales 36mm 12V 24 Volt Heavy Duty Low Speed BLDC Brushless DC Planetary Gear Motor vacuum pump connector

Product Description

                      36mm 12v 24 volt  heavy duty low speed BLDC brushless dc planetary gear motor

1. Features of PG36BL36
Voltage:12V 24V
Speed: 0.8-2000rpm
Typical applications:  Optical equipment, monitoring cameras, kind of finger-electric locks, automatic energy saving bath, water IC card, toys and gifts, office equipment, household appliances, automatic actuator

2. Specifications of PG36BL36

Note: It’s the typical specificaitoin for reference only, We can choose DC motor with different voltage speed to meet your torque and speed requirement.

Company Profile

1. About us
Business Type: Manufacturer, Trading Company Verified
Location: ZHangZhoug, China (Mainland) Verified
Main Products: dc motor,ac motor,gear motor,stepper motor,brushless motor
Total Employees: 51 – 100 People
Total Annual Revenue: $5 Million – $10 Million
Year Established: 2014 Verified
Top 3 Markets: Western Europe 20.00%  North America 15.00%  Domestic Market 12.00%
Product Certifications : CE, RoSH, RoSH CE 
Trademarks : CHINAMFG

2. Production line 
1)Production line

2) Product components

Packing&Delivery

Certifications

Customer Visits

FAQ
Q: What’s your main products?
A:We currently produce Brushed Dc Motors, Brushed Dc gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors and Ac Motors etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q:How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed life time and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have customized service for your standard motors?
A:Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: you have individual design service for motors?
A:Yes, we would like to design motors individually for our customers, but it may need some mould charge and design charge. 

Q:Can I have samples for testing first?
A:Yes, definitely you can. After confirmed the needed motor specs, we will quote and provide a proforma invoice for samples, once we get the payment, we will get a PASS from our account department to proceed samples accordingly.

Q:How do you make sure motor quality?
A:We have our own inspection procedures: for incoming materials, we have signed sample and drawing to make sure qualified incoming materials; for production process, we have tour inspection in the process and final inspection to make sure qualified products before shipping.

Q:What’s your lead time?
A:Generally speaking, our regular standard product will need 25-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depends on the specific orders

Q:What’s your payment term?
A:For all our new customers, we will need 40% deposite, 60% paid before shipment.

Q:When will you reply after got my inquiries?
A:We will response within 24 hours once get your inquires.

Q:How can I trust you to make sure my money is safe?
A:We are certified by the third party SGS and we have exported to over 85 countries up to June.2017. You can check our reputation with our current customers in your country (if our customers do not mind), or you can order via alibaba to get trade assurance from alibaba to make sure your money is safe.

Q:What’s the minimum order quantity?
A:Our minimum order quantity depends on different motor models, please email us to check. Also, we usually do not accept personal use motor orders. 

Q:What’s your shipping method for motors?
A:For samples and packages less than 100kg, we usually suggest express shipping; For heavy packages, we usually suggest air shipping or sea shipping. But it all depends on our customers’ needs.

Q:What certifications do you have?
A:We currently have CE and ROSH certifications.

Q:Can you send me your price list?
A:Since we have hundreds of different products, and price varies per different specifications, we are not able to offer a price list. But we can quote within 24 hours once got your inquirues to make sure you can get the price in time.

Q:Can I visit your company?
A:Yes, welcome to visit our company, but please let us know at least 2 weeks in advance to help us make sure no other meetings during the day you visit us. Thanks!

                                                                  
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Household Appliances, Finger-Electronic Locks, Toys and Gifts
Operating Speed: Low Speed
Function: Driving
Casing Protection: Drip-Proof
Structure and Working Principle: Brush
Certification: Ce, RoHS
Samples:
US$ 35/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

What factors should be considered when selecting a brushless motor for a specific application?

When selecting a brushless motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here are the key factors to take into account:

1. Power and Torque Requirements:

Determine the power and torque requirements of the application. This includes considering the desired operating speed, acceleration, and load characteristics. Select a brushless motor that can deliver the required power and torque output within the application’s operating range. Consider factors such as the motor’s power rating, torque density, and speed-torque characteristics.

2. Size and Form Factor:

Evaluate the space available for motor installation. Consider the physical dimensions and form factor of the motor to ensure it can fit within the application’s constraints. Additionally, consider the weight of the motor, especially in applications where weight is a critical factor, such as drones or portable devices.

3. Environmental Conditions:

Assess the environmental conditions in which the motor will operate. Consider factors such as temperature extremes, humidity, dust, and vibration levels. Choose a brushless motor that is designed to withstand and perform reliably in the specific environmental conditions of the application. Look for motors with appropriate protection ratings (e.g., IP ratings) and robust construction.

4. Efficiency and Energy Consumption:

Consider the desired energy efficiency of the application. Select a brushless motor with high efficiency to minimize energy consumption and maximize overall system efficiency. Efficiency can be influenced by factors such as motor design, winding configuration, and the use of advanced control techniques. Look for motors with high efficiency ratings or specific certifications, such as IE (International Efficiency) classifications.

5. Control and Feedback Requirements:

Evaluate the control and feedback requirements of the application. Determine if sensorless control or position feedback through sensors (e.g., encoders) is necessary for precise speed or position control. Consider the compatibility of the motor’s control interfaces and communication protocols with the application’s control system. Some applications may require motors with built-in control electronics or compatibility with specific motor controllers.

6. Operating Voltage and Power Supply:

Determine the available power supply and the operating voltage range of the application. Select a brushless motor that operates within the available voltage range and is compatible with the power supply infrastructure. Consider factors such as voltage ratings, current requirements, and the availability of appropriate power supply units or motor drives.

7. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the application. Consider factors such as the motor’s rated lifetime, bearing type, insulation class, and overall build quality. Look for motors from reputable manufacturers with a track record of producing reliable and durable products. Consider the availability of maintenance and support services.

8. Cost and Budget:

Consider the cost and budget limitations of the application. Balance the desired motor performance and features with the available budget. Compare the costs of different motor options, taking into account factors such as initial purchase cost, maintenance requirements, and potential energy savings over the motor’s lifetime.

9. Application-Specific Considerations:

Take into account any application-specific requirements or constraints. This may include factors such as regulatory compliance, specific certifications (e.g., safety or industry-specific certifications), compatibility with other system components, and any unique operational or functional requirements of the application.

By carefully considering these factors, you can select a brushless motor that is well-suited for the specific application, ensuring optimal performance, efficiency, reliability, and compatibility.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

What is a brushless motor, and how does it differ from traditional brushed motors?

A brushless motor is an electric motor that operates without the use of brushes and a commutator, unlike traditional brushed motors. Brushless motors rely on electronic commutation to control the power distribution to the motor’s windings, resulting in improved efficiency, reliability, and performance. Here are the key differences between brushless motors and traditional brushed motors:

1. Construction:

Brushed motors consist of a rotor (armature) and a stator. The rotor contains permanent magnets, and the stator consists of electromagnets. Brushes and a commutator are used to transfer power to the rotor and control the direction of current flow. In contrast, brushless motors have a stationary stator with windings and a rotor that contains permanent magnets. The power is supplied to the stator windings through an external controller that electronically commutates the motor.

2. Commutation:

In brushed motors, commutation is achieved mechanically through the brushes and commutator. The brushes make physical contact with the commutator, which switches the direction of current flow in the rotor windings as the motor rotates. This mechanical commutation causes friction, wear, and electrical arcing, leading to inefficiencies and limited lifespan. Brushless motors, on the other hand, employ electronic commutation. Sensors or Hall effect devices detect the rotor position, and the external controller determines the appropriate timing and sequence of current flow in the stator windings, eliminating the need for brushes and commutation mechanisms.

3. Efficiency:

Brushless motors are generally more efficient than brushed motors. The absence of brushes and commutator reduces friction and electrical losses, resulting in higher efficiency and improved power conversion. Brushed motors experience energy losses due to brush contact resistance and electrical arcing, which can reduce overall efficiency. Brushless motors can achieve efficiency levels of over 90%, while brushed motors typically have efficiencies ranging from 75% to 85%.

4. Maintenance:

Brushless motors require less maintenance compared to brushed motors. The brushes in brushed motors wear over time and need periodic replacement. Additionally, the commutator may require cleaning or resurfacing. In contrast, brushless motors have no brushes or commutator, eliminating the need for brush replacement and commutator maintenance. This makes brushless motors more reliable and reduces downtime and maintenance costs.

5. Lifespan:

The lifespan of brushless motors is generally longer than that of brushed motors. The absence of brushes and commutator reduces wear and electrical arcing, which are common causes of failure in brushed motors. Brushless motors can operate for thousands of hours without requiring major maintenance, while brushed motors typically have a shorter lifespan due to brush and commutator wear.

6. Control and Performance:

Brushless motors offer more precise control and better performance compared to brushed motors. The electronic commutation in brushless motors allows for finer control of the motor’s speed, torque, and direction. The external controller can adjust the motor’s parameters dynamically, enabling smoother operation and better responsiveness. Brushless motors also have higher torque-to-weight ratios, faster acceleration, and lower inertia, making them suitable for applications requiring high-performance and precise motion control.

These differences make brushless motors advantageous in many applications where efficiency, reliability, and precise control are crucial. They are commonly used in industries such as robotics, aerospace, electric vehicles, and industrial automation, where high-performance and long-lasting motors are required.

China Best Sales 36mm 12V 24 Volt Heavy Duty Low Speed BLDC Brushless DC Planetary Gear Motor   vacuum pump connector	China Best Sales 36mm 12V 24 Volt Heavy Duty Low Speed BLDC Brushless DC Planetary Gear Motor   vacuum pump connector
editor by CX 2024-04-17

China manufacturer CHINAMFG Customized 1nm 600rpm 48V 600W Brushless DC Gear Motor 12V 500W supplier

Product Description

Product Description

Feature: 

A. High power range from 75W to 15KW
B. Dia: 57mm-180mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
K.High-performance and stable matching driver and controller

Δ Kindly remind: As different customers may need different motor parameter for fitting your equipment. If below motor can’t fit your need, please kindly send inquiry to us with information for rated power or torque,rated speed, and rated voltage for our new size drawing making for you. CLICK HERE to contact me. Thanks a lot!

Dimensions (Unit: mm )
Mounting screws are included with gear head.

Gearbox Specification:

Gearbox Type

PLF90/PLE90

ZPLF90/ZPLE90

Deceleration stage

1

2

3

1

2

3

Length

153

176.5

199.5

187.5

222

245.5

Reduction ratio

Level 1: 3, 4, 5, 7, 10
Level 2: 16, 20, 25, 28, 35, 40, 70
Level 3: 64, 80, 100, 125, 140, 175, 200, 250

110mm 1000W BLDC motor with PLF90/PLE90 Planetary Gearbox 

Other Motor Specification Form: 
Δ Motor interface, Voltage, Speed can be customized.

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Motor Flange Size

Δ More Motor Flange Size to choose, if you need other size. Welcome to contact us to custom.

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 330/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

Are there advancements or innovations in brushless motor technology worth noting?

Yes, there have been significant advancements and innovations in brushless motor technology that are worth noting. These advancements have led to improved performance, efficiency, and versatility of brushless motors across various industries. Here’s a detailed explanation of some notable advancements:

1. High-Efficiency Designs:

Advancements in brushless motor design have led to increased efficiency. Motor manufacturers have focused on optimizing the motor’s electromagnetic design, reducing internal power losses, and improving overall energy conversion efficiency. This has resulted in brushless motors with higher power density, improved torque-to-weight ratios, and reduced energy consumption. These high-efficiency designs have found applications in sectors such as electric vehicles, renewable energy systems, and industrial automation, where energy efficiency is crucial.

2. Advanced Control Techniques:

The development of advanced control techniques has greatly enhanced the performance and functionality of brushless motors. Motor control algorithms, such as sensorless control and field-oriented control (FOC), enable precise control of motor speed, torque, and position. These techniques make brushless motors more responsive, efficient, and capable of delivering smooth and precise motion control. Advanced control techniques have revolutionized applications such as robotics, drones, CNC machines, and electric propulsion systems.

3. Integrated Electronics:

Advancements in electronics integration have led to the development of brushless motors with integrated control electronics. These motors, often referred to as “smart” or “intelligent” motors, incorporate built-in motor controllers, sensors, and communication interfaces. The integration of electronics simplifies motor installation, reduces wiring complexity, and enables seamless integration with control systems. Smart brushless motors find applications in automation, robotics, and Internet of Things (IoT) devices, where compactness, ease of use, and connectivity are essential.

4. Sensor Technology:

New sensor technologies have emerged to enhance the performance and reliability of brushless motors. Hall effect sensors and encoders are commonly used in brushless motors to provide feedback on rotor position, enabling precise control and commutation. Recent advancements in sensor technologies have led to the development of more compact, accurate, and durable sensors. Additionally, the integration of sensorless control methods, which rely on motor voltage and current measurements, has eliminated the need for position sensors in some applications, reducing cost and complexity.

5. Materials and Manufacturing:

Advancements in materials and manufacturing techniques have contributed to the improvement of brushless motor performance. The use of high-performance magnet materials, such as neodymium magnets, has increased motor power density and efficiency. Advanced manufacturing processes, such as precision machining and automated assembly, have improved the consistency and quality of brushless motors. Additionally, advancements in thermal management techniques and materials have enabled brushless motors to operate at higher temperatures, expanding their suitability for demanding environments.

6. Miniaturization and Integration:

Brushless motors have seen advancements in miniaturization and integration, allowing for compact and versatile designs. Miniature brushless motors are now available in smaller form factors, making them suitable for applications with limited space, such as medical devices, drones, and consumer electronics. Furthermore, the integration of multiple motors within a single housing, known as multi-axis or multi-DOF systems, has enabled complex motion control and robotics applications, including robotic arms and articulated mechanisms.

7. Application-Specific Customization:

Advancements in brushless motor technology have also facilitated application-specific customization. Motor manufacturers are increasingly offering customization options to meet the specific needs and requirements of various industries. This includes tailoring motor designs, winding configurations, cooling systems, and control parameters to optimize performance and efficiency for specific applications. Customization allows for better integration, improved performance, and enhanced reliability in diverse industries such as aerospace, automotive, and industrial automation.

In summary, advancements and innovations in brushless motor technology have resulted in higher efficiency designs, advanced control techniques, integrated electronics, improved sensor technology, enhanced materials and manufacturing processes, miniaturization and integration, as well as application-specific customization. These advancements have expanded the capabilities and applications of brushless motors, making them indispensable in numerous industries, ranging from automotive and robotics to renewable energy and consumer electronics.

brushless motor

What is the significance of commutation in brushless motor operation, and how is it achieved?

Commutation is a critical aspect of brushless motor operation as it determines the timing and sequence of current flow in the motor windings. It is the process by which the motor’s magnetic field is switched to generate continuous rotation. The significance of commutation lies in its ability to maintain proper alignment between the magnetic field produced by the stator and the rotor’s permanent magnets, resulting in smooth and efficient motor operation. Here’s a detailed explanation of the significance of commutation in brushless motor operation and how it is achieved:

1. Magnetic Field Alignment: Commutation ensures that the magnetic field produced by the motor’s stator windings is properly aligned with the permanent magnets on the rotor. This alignment is crucial for generating the necessary torque to drive the rotor and produce rotation. By switching the current flow in the motor windings at the right time and in the right sequence, commutation ensures that the stator’s magnetic field interacts effectively with the rotor’s magnets, producing continuous and smooth rotation.

2. Efficient Power Conversion: Commutation plays a vital role in efficient power conversion within the brushless motor. As the current flows through the motor windings, commutation switches the current path to maintain the desired direction of rotation. By timely switching the current flow, commutation minimizes power losses and maximizes the energy transfer between the power supply and the motor. This efficient power conversion results in improved motor performance, higher energy efficiency, and reduced heat generation.

3. Elimination of Brushes and Commutators: Unlike brushed motors that rely on mechanical brushes and commutators for current switching, brushless motors achieve commutation electronically. This eliminates the need for brushes and commutators, which are prone to wear, friction, and electrical arcing. By replacing these mechanical components with solid-state electronic commutation, brushless motors offer several advantages, including reduced maintenance requirements, longer lifespan, and improved reliability.

4. Precise Speed Control: Commutation in brushless motors enables precise speed control. By accurately timing and sequencing the current flow in the motor windings, the control system of a brushless motor can regulate the motor’s rotational speed. This precise speed control is crucial in applications that require specific speed requirements, such as robotics, electric vehicles, and industrial automation.

5. Commutation Methods: Brushless motors achieve commutation through various methods, the most common being sensor-based commutation and sensorless commutation. Sensor-based commutation utilizes position sensors, such as Hall effect sensors or encoders, to detect the rotor’s position and determine the appropriate timing and sequence of current switching. Sensorless commutation, on the other hand, estimates the rotor position based on the back electromotive force (EMF) generated in the motor windings. Advanced control algorithms and signal processing techniques are employed to accurately estimate the rotor position and achieve precise commutation without the need for additional sensors.

In summary, commutation is of significant importance in brushless motor operation. It ensures proper alignment of the magnetic fields, enables efficient power conversion, eliminates mechanical wear components, allows for precise speed control, and contributes to the overall performance and reliability of brushless motors. Through sensor-based or sensorless commutation methods, brushless motors achieve accurate and timely switching of current flow, resulting in smooth rotation and optimal motor performance.

brushless motor

What are the primary advantages of using brushless motors in various applications?

Brushless motors offer several advantages that make them preferred choices in various applications. Here are the primary advantages of using brushless motors:

1. High Efficiency:

Brushless motors are known for their high efficiency. The absence of brushes and commutators reduces friction and electrical losses, resulting in improved power conversion and energy efficiency. This efficiency translates into lower power consumption, reduced heat generation, and longer battery life in battery-powered applications. High efficiency makes brushless motors suitable for applications where energy efficiency is crucial, such as electric vehicles, renewable energy systems, and battery-operated devices.

2. Increased Reliability:

Brushless motors offer increased reliability compared to brushed motors. The lack of brushes and commutators eliminates common points of failure in brushed motors. Brushes can wear out and require periodic replacement, while commutators can experience electrical arcing and wear. By removing these components, brushless motors have longer lifespans, reduced maintenance requirements, and higher overall reliability. This advantage is particularly important in critical applications where downtime and maintenance costs must be minimized.

3. Precise Speed and Position Control:

Brushless motors provide precise speed and position control, making them suitable for applications that require accurate motion control. The electronic commutation in brushless motors allows for precise monitoring and adjustment of motor parameters, such as speed, torque, and direction. This level of control enables smooth and precise movements, making brushless motors ideal for robotics, CNC machines, automation systems, and other applications that demand precise positioning and motion control.

4. Compact Size and High Power Density:

Brushless motors have a compact design and high power density, making them suitable for applications where space is limited. The absence of brushes and commutators allows for a more streamlined motor design, reducing the overall size and weight of the motor. This compact size makes brushless motors ideal for applications with size constraints, such as drones, portable devices, and small appliances. Despite their compact size, brushless motors can deliver high power output, making them capable of driving demanding applications.

5. Reduced Electromagnetic Interference (EMI):

Brushless motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless motors produces smoother and more controlled current waveforms, resulting in reduced EMI. This advantage is particularly important in applications where EMI can interfere with sensitive electronics or cause electromagnetic compatibility (EMC) issues. Brushless motors are commonly used in medical equipment, telecommunications, and audio/video equipment, where minimizing EMI is critical.

6. Higher Speed and Acceleration Capability:

Brushless motors offer higher speed and acceleration capabilities compared to brushed motors. The absence of brushes reduces friction and allows brushless motors to achieve higher rotational speeds. Additionally, the electronic commutation enables faster switching and control, resulting in faster acceleration and deceleration. These characteristics make brushless motors suitable for applications that require rapid movements, high-speed operation, and quick response times, such as robotics, industrial automation, and electric vehicles.

These advantages make brushless motors a preferred choice in a wide range of applications, including robotics, electric vehicles, aerospace, industrial automation, medical equipment, consumer electronics, and more. Their high efficiency, reliability, precise control, compact size, reduced EMI, and high-speed capabilities contribute to improved performance and enable innovative designs in various industries.

China manufacturer CHINAMFG Customized 1nm 600rpm 48V 600W Brushless DC Gear Motor 12V 500W   supplier China manufacturer CHINAMFG Customized 1nm 600rpm 48V 600W Brushless DC Gear Motor 12V 500W   supplier
editor by CX 2024-04-15