Tag Archives: motor nema 23

China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W vacuum pump connector

Product Description

 

Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

Planetary Gearbox Parameters:

56JXE300K
Ring material Metal
Bearing at output Ball bearings
Max. Radial (12mm from flange) 300N
Max. shaft axial load 200N
Radial play of shaft (near to flange) ≤0.08mm
Axial play of shaft ≤0.4mm
Backlash at no-load ≤2.5°
Shaft press fit force, max 300N

 

Motor Shaft Pinion Specifications
Module 1
No. of teeth 12 15 9
Pressure angle 20°
Hole diameter Φ6H7
Reduction ratio 1/4.25  1/15  1/18  1/23  1/52  1/61  1/72  1/96  1/121  1/220  1/260  1/307 1/3.6  1/13  1/43  1/154  1/187 1/5.33  1/28

 

Gearbox Specifications:
Reduction ratio Exact reduction ratio Rated tolerance torque Max momentary tolerance torque Efficiency L (mm) Weight (g)
1/3.6  1/4.25  1/5.33 1/3.6  1/4.25  1/5.33 3 N.m Max 9 N.m 90% 37.8±0.5 489
1/13  1/15  1/18  1/23  1/28 1/12.96  1/15.30  1/18.06  1/22.67  1/28.44 12 N.m Max 36 N.m 0.81 49.5±0.5 681
1/43  1/52  1/61  1/72  1/96  1/121 1/42.69  1/51.84  1/61.20  1/72.25  1/96.33  1/120.89 24 N.m Max 72 N.m 73% 60.8±0.5 871
1/154  1/187  1/220  1/260  1/307 1/153.69  1/186.62  1/220.32  1/260.10  1/307.06 30 N.m Max 90 N.m 0.66 71.9±0.5 1066
Input & output same rotation direction; Motor Max. input speed: <6000rpm; Operating temperature range: -15ºC ~ +80ºC

We support many different Gearbox to customize, such as Planetary Gearbox, High Precision Planetary Gearbox, Worm gearbox, Eccentric Gearbox and so on. If you have any customized requirements, contact us immediately!!!

 

Planetary Gearbox Type:

 

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

 

Detailed Photos

                                       Cnc Motor Kits                                                                                                   Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

1. who are we?

We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.

2. how can we guarantee quality?

We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.

3.what can you buy from us?

Always a pre-production sample before mass production;
Always final Inspection before shipment;

4. why should you buy from us not from other suppliers?

Professional one-to-1 motor customized . The world’s large enterprise of choice for high quality suppliers . ISO9001:2008 quality management system certification, through the CE, ROHS certification.

5. what services can we provide?

Accepted Delivery Terms: FOB,CFR,CIF,EXW,CIP,FCA,CPT,DDP,DDU,Express Delivery,DAF,DES;
Accepted Payment Currency:USD,EUR,CAD,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Cash,Escrow;
Language Spoken:English,Chinese

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Compound
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What factors should be considered when selecting a brushless motor for a specific application?

When selecting a brushless motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here are the key factors to take into account:

1. Power and Torque Requirements:

Determine the power and torque requirements of the application. This includes considering the desired operating speed, acceleration, and load characteristics. Select a brushless motor that can deliver the required power and torque output within the application’s operating range. Consider factors such as the motor’s power rating, torque density, and speed-torque characteristics.

2. Size and Form Factor:

Evaluate the space available for motor installation. Consider the physical dimensions and form factor of the motor to ensure it can fit within the application’s constraints. Additionally, consider the weight of the motor, especially in applications where weight is a critical factor, such as drones or portable devices.

3. Environmental Conditions:

Assess the environmental conditions in which the motor will operate. Consider factors such as temperature extremes, humidity, dust, and vibration levels. Choose a brushless motor that is designed to withstand and perform reliably in the specific environmental conditions of the application. Look for motors with appropriate protection ratings (e.g., IP ratings) and robust construction.

4. Efficiency and Energy Consumption:

Consider the desired energy efficiency of the application. Select a brushless motor with high efficiency to minimize energy consumption and maximize overall system efficiency. Efficiency can be influenced by factors such as motor design, winding configuration, and the use of advanced control techniques. Look for motors with high efficiency ratings or specific certifications, such as IE (International Efficiency) classifications.

5. Control and Feedback Requirements:

Evaluate the control and feedback requirements of the application. Determine if sensorless control or position feedback through sensors (e.g., encoders) is necessary for precise speed or position control. Consider the compatibility of the motor’s control interfaces and communication protocols with the application’s control system. Some applications may require motors with built-in control electronics or compatibility with specific motor controllers.

6. Operating Voltage and Power Supply:

Determine the available power supply and the operating voltage range of the application. Select a brushless motor that operates within the available voltage range and is compatible with the power supply infrastructure. Consider factors such as voltage ratings, current requirements, and the availability of appropriate power supply units or motor drives.

7. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the application. Consider factors such as the motor’s rated lifetime, bearing type, insulation class, and overall build quality. Look for motors from reputable manufacturers with a track record of producing reliable and durable products. Consider the availability of maintenance and support services.

8. Cost and Budget:

Consider the cost and budget limitations of the application. Balance the desired motor performance and features with the available budget. Compare the costs of different motor options, taking into account factors such as initial purchase cost, maintenance requirements, and potential energy savings over the motor’s lifetime.

9. Application-Specific Considerations:

Take into account any application-specific requirements or constraints. This may include factors such as regulatory compliance, specific certifications (e.g., safety or industry-specific certifications), compatibility with other system components, and any unique operational or functional requirements of the application.

By carefully considering these factors, you can select a brushless motor that is well-suited for the specific application, ensuring optimal performance, efficiency, reliability, and compatibility.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

In which industries are brushless motors commonly employed, and what are their key roles?

Brushless motors find applications in a wide range of industries, thanks to their numerous advantages and capabilities. Here are some of the industries where brushless motors are commonly employed and their key roles:

1. Automotive Industry:

In the automotive industry, brushless motors are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They play a crucial role in providing propulsion for these vehicles, driving the wheels and ensuring efficient power delivery. Brushless motors offer high efficiency, precise control, and fast acceleration, making them ideal for electric drivetrains. Additionally, they are employed in various automotive subsystems such as electric power steering, HVAC systems, cooling fans, and braking systems.

2. Aerospace and Aviation:

Brushless motors have significant applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations. Their high power-to-weight ratio, compact size, and high-speed capabilities make them well-suited for aerospace requirements.

3. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They power robotic arms, joints, and grippers, enabling accurate and controlled movements. Brushless motors offer high torque, precise position control, and rapid acceleration, making them vital for industrial robotics, collaborative robots (cobots), and automated manufacturing processes. Their compact size and efficiency also contribute to the design and performance of robotic systems.

4. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes. Their ability to handle high loads, operate at high speeds, and offer precise control makes them valuable in demanding industrial environments.

5. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of the industries where brushless motors are commonly employed. Their efficiency, reliability, precise control, compact size, and high-performance characteristics make them versatile and valuable in many other sectors as well. As technology continues to advance, brushless motors are likely to find new applications and play increasingly important roles in various industries.

China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W   vacuum pump connector	China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W   vacuum pump connector
editor by CX 2024-05-14

China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower vacuum pump booster

Product Description

NEMA 57 86mm Brushless BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V Dc Servo Motor for Lawn Mower
 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

Planetary Gearbox Type:

Detailed Photos

                                       Cnc Motor Kits                                                                                       Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

What is the significance of commutation in brushless motor operation, and how is it achieved?

Commutation is a critical aspect of brushless motor operation as it determines the timing and sequence of current flow in the motor windings. It is the process by which the motor’s magnetic field is switched to generate continuous rotation. The significance of commutation lies in its ability to maintain proper alignment between the magnetic field produced by the stator and the rotor’s permanent magnets, resulting in smooth and efficient motor operation. Here’s a detailed explanation of the significance of commutation in brushless motor operation and how it is achieved:

1. Magnetic Field Alignment: Commutation ensures that the magnetic field produced by the motor’s stator windings is properly aligned with the permanent magnets on the rotor. This alignment is crucial for generating the necessary torque to drive the rotor and produce rotation. By switching the current flow in the motor windings at the right time and in the right sequence, commutation ensures that the stator’s magnetic field interacts effectively with the rotor’s magnets, producing continuous and smooth rotation.

2. Efficient Power Conversion: Commutation plays a vital role in efficient power conversion within the brushless motor. As the current flows through the motor windings, commutation switches the current path to maintain the desired direction of rotation. By timely switching the current flow, commutation minimizes power losses and maximizes the energy transfer between the power supply and the motor. This efficient power conversion results in improved motor performance, higher energy efficiency, and reduced heat generation.

3. Elimination of Brushes and Commutators: Unlike brushed motors that rely on mechanical brushes and commutators for current switching, brushless motors achieve commutation electronically. This eliminates the need for brushes and commutators, which are prone to wear, friction, and electrical arcing. By replacing these mechanical components with solid-state electronic commutation, brushless motors offer several advantages, including reduced maintenance requirements, longer lifespan, and improved reliability.

4. Precise Speed Control: Commutation in brushless motors enables precise speed control. By accurately timing and sequencing the current flow in the motor windings, the control system of a brushless motor can regulate the motor’s rotational speed. This precise speed control is crucial in applications that require specific speed requirements, such as robotics, electric vehicles, and industrial automation.

5. Commutation Methods: Brushless motors achieve commutation through various methods, the most common being sensor-based commutation and sensorless commutation. Sensor-based commutation utilizes position sensors, such as Hall effect sensors or encoders, to detect the rotor’s position and determine the appropriate timing and sequence of current switching. Sensorless commutation, on the other hand, estimates the rotor position based on the back electromotive force (EMF) generated in the motor windings. Advanced control algorithms and signal processing techniques are employed to accurately estimate the rotor position and achieve precise commutation without the need for additional sensors.

In summary, commutation is of significant importance in brushless motor operation. It ensures proper alignment of the magnetic fields, enables efficient power conversion, eliminates mechanical wear components, allows for precise speed control, and contributes to the overall performance and reliability of brushless motors. Through sensor-based or sensorless commutation methods, brushless motors achieve accurate and timely switching of current flow, resulting in smooth rotation and optimal motor performance.

brushless motor

What are the primary advantages of using brushless motors in various applications?

Brushless motors offer several advantages that make them preferred choices in various applications. Here are the primary advantages of using brushless motors:

1. High Efficiency:

Brushless motors are known for their high efficiency. The absence of brushes and commutators reduces friction and electrical losses, resulting in improved power conversion and energy efficiency. This efficiency translates into lower power consumption, reduced heat generation, and longer battery life in battery-powered applications. High efficiency makes brushless motors suitable for applications where energy efficiency is crucial, such as electric vehicles, renewable energy systems, and battery-operated devices.

2. Increased Reliability:

Brushless motors offer increased reliability compared to brushed motors. The lack of brushes and commutators eliminates common points of failure in brushed motors. Brushes can wear out and require periodic replacement, while commutators can experience electrical arcing and wear. By removing these components, brushless motors have longer lifespans, reduced maintenance requirements, and higher overall reliability. This advantage is particularly important in critical applications where downtime and maintenance costs must be minimized.

3. Precise Speed and Position Control:

Brushless motors provide precise speed and position control, making them suitable for applications that require accurate motion control. The electronic commutation in brushless motors allows for precise monitoring and adjustment of motor parameters, such as speed, torque, and direction. This level of control enables smooth and precise movements, making brushless motors ideal for robotics, CNC machines, automation systems, and other applications that demand precise positioning and motion control.

4. Compact Size and High Power Density:

Brushless motors have a compact design and high power density, making them suitable for applications where space is limited. The absence of brushes and commutators allows for a more streamlined motor design, reducing the overall size and weight of the motor. This compact size makes brushless motors ideal for applications with size constraints, such as drones, portable devices, and small appliances. Despite their compact size, brushless motors can deliver high power output, making them capable of driving demanding applications.

5. Reduced Electromagnetic Interference (EMI):

Brushless motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless motors produces smoother and more controlled current waveforms, resulting in reduced EMI. This advantage is particularly important in applications where EMI can interfere with sensitive electronics or cause electromagnetic compatibility (EMC) issues. Brushless motors are commonly used in medical equipment, telecommunications, and audio/video equipment, where minimizing EMI is critical.

6. Higher Speed and Acceleration Capability:

Brushless motors offer higher speed and acceleration capabilities compared to brushed motors. The absence of brushes reduces friction and allows brushless motors to achieve higher rotational speeds. Additionally, the electronic commutation enables faster switching and control, resulting in faster acceleration and deceleration. These characteristics make brushless motors suitable for applications that require rapid movements, high-speed operation, and quick response times, such as robotics, industrial automation, and electric vehicles.

These advantages make brushless motors a preferred choice in a wide range of applications, including robotics, electric vehicles, aerospace, industrial automation, medical equipment, consumer electronics, and more. Their high efficiency, reliability, precise control, compact size, reduced EMI, and high-speed capabilities contribute to improved performance and enable innovative designs in various industries.

China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   vacuum pump booster	China high quality NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   vacuum pump booster
editor by CX 2024-05-08

China Best Sales NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower with Hot selling

Product Description

NEMA 57 86mm Brushless BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V Dc Servo Motor for Lawn Mower
 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

Planetary Gearbox Type:

Detailed Photos

                                       Cnc Motor Kits                                                                                       Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What factors should be considered when selecting a brushless motor for a specific application?

When selecting a brushless motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here are the key factors to take into account:

1. Power and Torque Requirements:

Determine the power and torque requirements of the application. This includes considering the desired operating speed, acceleration, and load characteristics. Select a brushless motor that can deliver the required power and torque output within the application’s operating range. Consider factors such as the motor’s power rating, torque density, and speed-torque characteristics.

2. Size and Form Factor:

Evaluate the space available for motor installation. Consider the physical dimensions and form factor of the motor to ensure it can fit within the application’s constraints. Additionally, consider the weight of the motor, especially in applications where weight is a critical factor, such as drones or portable devices.

3. Environmental Conditions:

Assess the environmental conditions in which the motor will operate. Consider factors such as temperature extremes, humidity, dust, and vibration levels. Choose a brushless motor that is designed to withstand and perform reliably in the specific environmental conditions of the application. Look for motors with appropriate protection ratings (e.g., IP ratings) and robust construction.

4. Efficiency and Energy Consumption:

Consider the desired energy efficiency of the application. Select a brushless motor with high efficiency to minimize energy consumption and maximize overall system efficiency. Efficiency can be influenced by factors such as motor design, winding configuration, and the use of advanced control techniques. Look for motors with high efficiency ratings or specific certifications, such as IE (International Efficiency) classifications.

5. Control and Feedback Requirements:

Evaluate the control and feedback requirements of the application. Determine if sensorless control or position feedback through sensors (e.g., encoders) is necessary for precise speed or position control. Consider the compatibility of the motor’s control interfaces and communication protocols with the application’s control system. Some applications may require motors with built-in control electronics or compatibility with specific motor controllers.

6. Operating Voltage and Power Supply:

Determine the available power supply and the operating voltage range of the application. Select a brushless motor that operates within the available voltage range and is compatible with the power supply infrastructure. Consider factors such as voltage ratings, current requirements, and the availability of appropriate power supply units or motor drives.

7. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the application. Consider factors such as the motor’s rated lifetime, bearing type, insulation class, and overall build quality. Look for motors from reputable manufacturers with a track record of producing reliable and durable products. Consider the availability of maintenance and support services.

8. Cost and Budget:

Consider the cost and budget limitations of the application. Balance the desired motor performance and features with the available budget. Compare the costs of different motor options, taking into account factors such as initial purchase cost, maintenance requirements, and potential energy savings over the motor’s lifetime.

9. Application-Specific Considerations:

Take into account any application-specific requirements or constraints. This may include factors such as regulatory compliance, specific certifications (e.g., safety or industry-specific certifications), compatibility with other system components, and any unique operational or functional requirements of the application.

By carefully considering these factors, you can select a brushless motor that is well-suited for the specific application, ensuring optimal performance, efficiency, reliability, and compatibility.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China Best Sales NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   with Hot selling	China Best Sales NEMA 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   with Hot selling
editor by CX 2023-11-16

China 12V 24V NEMA 8 11 17 23 24 34 42 52 Mini Micro Ball Screw Linear Geared Closed Loop Stepper Step Stepping Motor Motors with Planetary Gearbox / Brake / Encoder motor brushes

Solution Description

12V 24V NEMA 8 Mini Micro Ball Screw Linear Geared Shut Loop Stepper Step Stepping Motor Motors with Planetary Gearbox / Brake / Encoder

Stepper Motor Overview:

Motor collection Section No. Step angle Motor duration Motor dimension Prospects No. Keeping torque
Nema eight two section 1.8 degree thirty~42mm 20x20mm 4 180~300g.cm
Nema eleven 2 stage 1.8 diploma 32~51mm 28x28mm 4 or six 430~1200g.cm
Nema fourteen two stage .9 or 1.8 diploma 27~42mm 35x35mm 4 one thousand~2000g.cm
Nema sixteen two section one.8 diploma 20~44mm 39x39mm four or 6 650~2800g.cm
Nema 17 2 stage .9 or 1.8 diploma 25~60mm 42x42mm 4 or 6 1.5~7.3kg.cm
Nema 23 two period .9 or 1.8 diploma 41~112mm 57x57mm 4 or 6 or eight .39~3.1N.m
3 phase one.2 degree 42~79mm 57x57mm .forty five~1.5N.m
Nema 24 two section 1.8 degree 56~111mm 60x60mm eight 1.17~4.5N.m
Nema 34 two stage 1.8 diploma sixty seven~155mm 86x86mm four or eight 3.4~twelve.2N.m
3 period 1.2 degree sixty five~150mm 86x86mm 2~7N.m
Nema forty two two section 1.8 degree 99~201mm 110x110mm 4 11.2~28N.m
3 section 1.2 degree 134~285mm 110x110mm eight~25N.m
Nema fifty two two section 1.8 degree 173~285mm 130x130mm four 13.3~22.5N.m
3 section one.2 degree 173~285mm 130x130mm thirteen.3~22.5N.m
Above only for consultant products, products of specific request can be manufactured according to the customer ask for.

1. The magnetic steel is large quality,we typically use the SH degree sort.
2. The rotor is be coated,minimize burrs,doing work efficiently,considerably less sound. We examination the stepper motor parts step by stage.
3. Stator is be check and rotor is be test just before assemble.
four. Right after we assemble the stepper motor, we will do 1 more take a look at for it, to make sure the quality is excellent.

JKONGMOTOR stepping motor is a motor that converts electrical pulse alerts into corresponding angular displacements or linear displacements. This tiny stepper motor can be broadly utilized in various fields, such as a 3D printer, phase lighting, laser engraving, textile equipment, health care equipment, automation tools, and many others.

Jkongmotor Nema 8 Stepper Motor Parameters:

Model No. Phase Angle Motor Duration Recent Resistance Inductance Keeping Torque # of Prospects Mass
( °) (L)mm A Ω mH g.cm No. kg
JK20HS30-0604 one.eight thirty .six 18 three.2 a hundred and eighty 4 .06
JK20HS33-0604 one.eight 33 .six 6.5 1.seven 200 four .07
JK20HS38-0604 one.eight 38 .6 10 5.five 300 4 .08
JK20HS42-0804 one.eight forty two .eight five.4 one.5 four hundred 4 .09

Jkongmotor Nema eleven Stepper Motor Parameters:

Model No. Stage Angle Motor Size Recent Resistance Inductance Keeping Torque # of Sales opportunities Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm2 Kg
JK28HS32-0674 1.eight 32 .sixty seven five.6 3.4 600 four nine .eleven
JK28HS32-0956 1.8 32 .95 two.eight .eight 430 6 9 .eleven
JK28HS45-0956 one.eight 45 .ninety five 3.four 1.two 750 six twelve .fourteen
JK28HS45-0674 1.eight forty five .sixty seven 6.8 four.nine 950 4 twelve .fourteen
JK28HS51-0956 1.8 fifty one .ninety five four.six 1.eight 900 6 18 .2
JK28HS51-0674 one.eight 51 .sixty seven nine.two 7.two 1200 four 18 .2

Jkongmotor Nema fourteen Stepper Motor Parameters:

Model No. Action Angle Motor Length Existing Resistance Inductance Keeping Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm g.cm2 Kg
JK35HS28-0504 one.8 28 .five 20 fourteen one thousand four eighty eleven .13
JK35HS34-1004 1.eight 34 1 2.seven four.3 1400 four one hundred thirteen .17
JK35HS42-1004 1.8 42 one 3.8 3.5 2000 four one hundred twenty five 23 .22

Jkongmotor 39mm Hybrid Stepping Motor Parameters:

Model No. Step Angle Motor Duration Recent Resistance Inductance Holding Torque # of Sales opportunities Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm g.cm2 Kg
JK39HY20-0404 one.8 twenty .four 6.6 7.5 650 four fifty 11 .twelve
JK39HY20-0506 1.8 20 .five 13 7.5 800 six 50 11 .twelve
JK39HY34-0404 one.eight 34 .4 thirty 32 2100 4 120 20 .18
JK39HY34-0306 1.8 34 .three 40 20 1300 six one hundred twenty 20 .eighteen
JK39HY38-0504 1.eight 38 .5 24 45 2900 four one hundred eighty 24 .2
JK39HY38-0806 one.8 38 .8 seven.five six 2000 six a hundred and eighty 24 .2
JK39HY44-0304 1.eight 44 .3 40 one hundred 2800 4 250 40 .25

Jkongmotor 42BYGH Nema 17 Phase Motor Parameters:

Model No. Action Angle Motor Duration Current Resistance Inductance Holding Torque # of Sales opportunities Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HS25-0404 1.eight twenty five .four 24 36 one.8 four 75 twenty .fifteen
JK42HS28-0504 one.eight 28 .5 20 21 1.five four eighty five 24 .22
JK42HS34-1334 1.8 34 1.33 two.one two.five 2.two 4 one hundred twenty 34 .22
JK42HS34-0406 1.eight 34 .4 24 15 one.six six a hundred and twenty 34 .22
JK42HS34-0956 1.8 34 .95 4.two 2.five one.six 6 one hundred twenty 34 .22
JK42HS40-0406 1.eight 40 .four thirty thirty two.six six a hundred and fifty 54 .28
JK42HS40-1684 1.8 40 one.68 one.65 three.2 3.six 4 150 54 .28
JK42HS40-1206 1.8 40 one.2 three 2.7 2.nine 6 a hundred and fifty 54 .28
JK42HS48-0406 1.eight 48 .four 30 25 three.one six 260 68 .35
JK42HS48-1684 one.8 forty eight one.sixty eight 1.65 2.8 4.4 4 260 68 .35
JK42HS48-1206 1.eight 48 1.two 3.three two.8 three.seventeen six 260 68 .35
JK42HS60-0406 1.eight 60 .4 30 39 6.five six 280 102 .5
JK42HS60-1704 one.8 sixty one.7 3 six.two 7.3 4 280 102 .5
JK42HS60-1206 1.eight sixty 1.2 6 seven five.6 6 280 102 .5

Jkongmotor Nema 23 Stepper Motor Parameters:

Model No. Step Angle Motor Size Recent Resistance Inductance Keeping Torque # of Sales opportunities Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. g.cm g.cm2 Kg
JK57HS41-1006 1.8 41 1 7.1 eight .48 six 250 150 .forty seven
JK57HS41-2008 1.eight forty one 2 1.four one.four .39 eight 250 one hundred fifty .47
JK57HS41-2804 1.8 41 two.8 .7 one.four .fifty five four 250 150 .forty seven
JK57HS51-1006 1.8 fifty one one six.six eight.two .seventy two 6 300 230 .59
JK57HS51-2008 one.8 51 2 1.8 two.7 .9 8 300 230 .59
JK57HS51-2804 1.eight 51 two.8 .eighty three 2.two one.01 4 three hundred 230 .59
JK57HS56-2006 1.8 fifty six two 1.8 two.five .9 6 350 280 .68
JK57HS56-2108 1.eight fifty six two.1 1.eight 2.five 1 8 350 280 .68
JK57HS56-2804 1.8 fifty six two.8 .9 2.five one.2 4 350 280 .68
JK57HS64-2804 one.eight sixty four 2.eight .8 2.3 1 4 400 300 .75
JK57HS76-2804 1.eight seventy six 2.8 one.one three.six 1.89 4 600 440 1.1
JK57HS76-3006 one.eight 76 3 1 1.6 1.35 six 600 440 one.one
JK57HS76-3008 1.8 seventy six three 1 1.8 1.5 eight 600 440 1.one
JK57HS82-3004 1.8 82 three one.2 4 2.one four 1000 600 1.2
JK57HS82-4008 1.8 eighty two 4 .8 1.8 2 8 1000 600 one.2
JK57HS82-4204 one.8 82 four.two .seven two.five 2.two four 1000 600 one.two
JK57HS100-4204 one.eight one hundred 4.2 .seventy five three three four 1100 seven hundred one.three
JK57HS112-3004 1.8 112 three 1.six 7.5 three four 1200 800 1.four
JK57HS112-4204 one.eight 112 4.two .9 3.8 3.one 4 1200 800 1.four

Jkongmotor Nema 24 Stepper Motor Parameters:

Model No. Wiring  Diagram Motor Duration Recent Resistance Inductance Holding Torque # of Qualified prospects Detent Torque Rotor Inertia Mass
(L)mm A Ω mH N.m No. g.cm g.cm2 Kg
JK60HS56-2008 Unipolar 56 2 1.eight three 1.seventeen 8 700 300 0.77
Parallel 2.8 .nine three.6 one.sixty five
Tandem 1.four 3.six fourteen.4 1.sixty five
JK60HS67-2008 Unipolar 67 two 2.four 4.six one.5 8 900 570 1.2
Parallel two.8 1.two four.6 two.one
Tandem 1.4 4.eight eighteen.4 2.1
JK60HS88-2008 Unipolar 88 2 3 six.8 2.two 8 1000 840 1.four
Parallel 2.eight one.five six.8 3.one
Tandem one.4 6 27.2 3.one
JK60HS100-2008 Unipolar 100 2 three.2 6.4 2.8 8 1100 980 1.seven
Parallel 2.eight one.6 6.four four
Tandem 1.4 six.4 twenty five.six 4
JK60HS111-2008 Unipolar 111 two four.four eight.three three.2 8 1200 1120 1.9
Parallel 2.eight 2.two eight.three four.5
Tandem one.4 8.eight 33.2 4.five

Jkongmotor Nema 34 86BYGH Stepper Motor Parameters:

Model No. Action Angle Motor Duration Current Resistance Inductance Holding Torque # of Prospects Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. Kg.cm g.cm2 Kg
JK86HS68-5904 one.8 67 five.9 .28 1.seven 3.four four .eight 1000 one.seven
JK86HS68-2808 one.eight sixty seven two.8 1.four 3.9 three.4 eight .8 1000 one.7
JK86HS78-5504 1.eight seventy eight 5.5 .forty six 4 four.6 four one.two 1400 two.three
JK86HS78-4208 1.eight seventy eight four.2 .75 three.4 four.six 8 1.2 1400 two.3
JK86HS97-4504 one.eight 97 4.five .66 three 5.eight four one.7 2100 3
JK86HS97-4008 one.8 ninety seven four .98 four.one four.seven eight 1.7 2100 three
JK86HS100-6004 1.eight 100 6 .36 two.8 7 4 1.nine 2200 3.one
JK86HS115-6004 one.eight a hundred and fifteen six .six 6.five eight.seven four two.4 2700 three.eight
JK86HS115-4208 one.8 a hundred and fifteen four.two .9 six 8.7 eight 2.4 2700 three.eight
JK86HS126-6004 1.eight 126 six .fifty eight six.five 6.3 four two.nine 3200 four.5
JK86HS155-6004 1.eight a hundred and fifty five 6 .68 9 thirteen 4 3.six 4000 five.four
JK86HS155-4208 one.eight one hundred fifty five 4.two 1.twenty five 8 twelve.two 8 3.six 4000 5.four

Jkongmotor Nema forty two Stepper Motor Parameters:

Model Stage Angle Motor Duration Present Resistance Inductance Holding Torque # of Qualified prospects Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. kg.cm g.cm2 Kg
JK110HS99-5504 one.eight 99 five.five .9 12 11.2 4 three 5500 5
JK110HS115-6004 one.eight 115 six .forty eight 7 12 4 4 7100 6
JK110HS150-6504 one.8 a hundred and fifty 6.5 .8 fifteen 21 4 5.9 10900 eight.4
JK110HS165-6004 1.8 165 six .9 fourteen 24 4 6.6 12800 nine.1
JK110HS201-8004 one.8 201 8 .67 12 28 four 7.five 16200 11.8

Jkongmotor Nema 52 Stepper Motor Parameters:

Model No. Functioning Voltage Rated Existing Resistance Inductance Holding Torque Noload Frequency Commencing Frequency Mass Motor Duration
VDC A Ω mH N.m No. g.cm Kg mm
JK130HS173-6004 80~325 six .75 twelve.6 25 25000 2300 thirteen.3 173
JK130HS229-6004 80~325 6 .eighty three 13.2 thirty 25000 2300 18 229
JK130HS257-7004 eighty~325 7 .73 eleven.7 40 23000 2200 19 257
JK130HS285-7004 80~325 7 .66 10 fifty 23000 2200 22.five 285

 

Stepping Motor Tailored

Thorough Pictures

                                                Motor with Driver                                                                                                         Closed Loop Stepper Motor

 

                       Easy Servo Stepper Motor Kits                                                          Geared Stepper Motor                                            Linear Actuator Stepper Motor

             Linear Screw Stepper Motor                                             3 / 4 Axis Cnc Stepper Motor Kits                                          Hybrid Stepper Motor            

 

                Brushless DC Motor                                                                  Brushed Dc Motor                                                        Coreless Dc Motor                          

Organization Profile

HangZhou CZPT Co., Ltd was a substantial technologies market zone in HangZhou, china. Our products utilized in a lot of types of devices, such as 3d printer CNC equipment, medical tools, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other firms to build extended-phrase cooperation with us.
Firm spirit of sincere and great track record, received the recognition and assist of the broad masses of consumers, at the very same time with the domestic and international suppliers near group of pursuits, the business entered the stage of stage of benign development, laying a reliable foundation for the strategic aim of acknowledging only actually the sustainable improvement of the firm.

Equipments Present:
Generation Stream:
Package deal:
Certification:


/ Piece
|
10 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Printing Equipment
Speed: Constant Speed
Number of Stator: Two-Phase

###

Customization:
Available

|


###

Motor series Phase No. Step angle Motor length Motor size Leads No. Holding torque
Nema 8 2 phase 1.8 degree 30~42mm 20x20mm 4 180~300g.cm
Nema 11 2 phase 1.8 degree 32~51mm 28x28mm 4 or 6 430~1200g.cm
Nema 14 2 phase 0.9 or 1.8 degree 27~42mm 35x35mm 4 1000~2000g.cm
Nema 16 2 phase 1.8 degree 20~44mm 39x39mm 4 or 6 650~2800g.cm
Nema 17 2 phase 0.9 or 1.8 degree 25~60mm 42x42mm 4 or 6 1.5~7.3kg.cm
Nema 23 2 phase 0.9 or 1.8 degree 41~112mm 57x57mm 4 or 6 or 8 0.39~3.1N.m
3 phase 1.2 degree 42~79mm 57x57mm 0.45~1.5N.m
Nema 24 2 phase 1.8 degree 56~111mm 60x60mm 8 1.17~4.5N.m
Nema 34 2 phase 1.8 degree 67~155mm 86x86mm 4 or 8 3.4~12.2N.m
3 phase 1.2 degree 65~150mm 86x86mm 2~7N.m
Nema 42 2 phase 1.8 degree 99~201mm 110x110mm 4 11.2~28N.m
3 phase 1.2 degree 134~285mm 110x110mm 8~25N.m
Nema 52 2 phase 1.8 degree 173~285mm 130x130mm 4 13.3~22.5N.m
3 phase 1.2 degree 173~285mm 130x130mm 13.3~22.5N.m
Above only for representative products, products of special request can be made according to the customer request.

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Mass
( °) (L)mm A Ω mH g.cm No. kg
JK20HS30-0604 1.8 30 0.6 18 3.2 180 4 0.06
JK20HS33-0604 1.8 33 0.6 6.5 1.7 200 4 0.07
JK20HS38-0604 1.8 38 0.6 10 5.5 300 4 0.08
JK20HS42-0804 1.8 42 0.8 5.4 1.5 400 4 0.09

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm2 Kg
JK28HS32-0674 1.8 32 0.67 5.6 3.4 600 4 9 0.11
JK28HS32-0956 1.8 32 0.95 2.8 0.8 430 6 9 0.11
JK28HS45-0956 1.8 45 0.95 3.4 1.2 750 6 12 0.14
JK28HS45-0674 1.8 45 0.67 6.8 4.9 950 4 12 0.14
JK28HS51-0956 1.8 51 0.95 4.6 1.8 900 6 18 0.2
JK28HS51-0674 1.8 51 0.67 9.2 7.2 1200 4 18 0.2

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm g.cm2 Kg
JK35HS28-0504 1.8 28 0.5 20 14 1000 4 80 11 0.13
JK35HS34-1004 1.8 34 1 2.7 4.3 1400 4 100 13 0.17
JK35HS42-1004 1.8 42 1 3.8 3.5 2000 4 125 23 0.22

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm g.cm2 Kg
JK39HY20-0404 1.8 20 0.4 6.6 7.5 650 4 50 11 0.12
JK39HY20-0506 1.8 20 0.5 13 7.5 800 6 50 11 0.12
JK39HY34-0404 1.8 34 0.4 30 32 2100 4 120 20 0.18
JK39HY34-0306 1.8 34 0.3 40 20 1300 6 120 20 0.18
JK39HY38-0504 1.8 38 0.5 24 45 2900 4 180 24 0.2
JK39HY38-0806 1.8 38 0.8 7.5 6 2000 6 180 24 0.2
JK39HY44-0304 1.8 44 0.3 40 100 2800 4 250 40 0.25

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HS25-0404 1.8 25 0.4 24 36 1.8 4 75 20 0.15
JK42HS28-0504 1.8 28 0.5 20 21 1.5 4 85 24 0.22
JK42HS34-1334 1.8 34 1.33 2.1 2.5 2.2 4 120 34 0.22
JK42HS34-0406 1.8 34 0.4 24 15 1.6 6 120 34 0.22
JK42HS34-0956 1.8 34 0.95 4.2 2.5 1.6 6 120 34 0.22
JK42HS40-0406 1.8 40 0.4 30 30 2.6 6 150 54 0.28
JK42HS40-1684 1.8 40 1.68 1.65 3.2 3.6 4 150 54 0.28
JK42HS40-1206 1.8 40 1.2 3 2.7 2.9 6 150 54 0.28
JK42HS48-0406 1.8 48 0.4 30 25 3.1 6 260 68 0.35
JK42HS48-1684 1.8 48 1.68 1.65 2.8 4.4 4 260 68 0.35
JK42HS48-1206 1.8 48 1.2 3.3 2.8 3.17 6 260 68 0.35
JK42HS60-0406 1.8 60 0.4 30 39 6.5 6 280 102 0.5
JK42HS60-1704 1.8 60 1.7 3 6.2 7.3 4 280 102 0.5
JK42HS60-1206 1.8 60 1.2 6 7 5.6 6 280 102 0.5

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. g.cm g.cm2 Kg
JK57HS41-1006 1.8 41 1 7.1 8 0.48 6 250 150 0.47
JK57HS41-2008 1.8 41 2 1.4 1.4 0.39 8 250 150 0.47
JK57HS41-2804 1.8 41 2.8 0.7 1.4 0.55 4 250 150 0.47
JK57HS51-1006 1.8 51 1 6.6 8.2 0.72 6 300 230 0.59
JK57HS51-2008 1.8 51 2 1.8 2.7 0.9 8 300 230 0.59
JK57HS51-2804 1.8 51 2.8 0.83 2.2 1.01 4 300 230 0.59
JK57HS56-2006 1.8 56 2 1.8 2.5 0.9 6 350 280 0.68
JK57HS56-2108 1.8 56 2.1 1.8 2.5 1 8 350 280 0.68
JK57HS56-2804 1.8 56 2.8 0.9 2.5 1.2 4 350 280 0.68
JK57HS64-2804 1.8 64 2.8 0.8 2.3 1 4 400 300 0.75
JK57HS76-2804 1.8 76 2.8 1.1 3.6 1.89 4 600 440 1.1
JK57HS76-3006 1.8 76 3 1 1.6 1.35 6 600 440 1.1
JK57HS76-3008 1.8 76 3 1 1.8 1.5 8 600 440 1.1
JK57HS82-3004 1.8 82 3 1.2 4 2.1 4 1000 600 1.2
JK57HS82-4008 1.8 82 4 0.8 1.8 2 8 1000 600 1.2
JK57HS82-4204 1.8 82 4.2 0.7 2.5 2.2 4 1000 600 1.2
JK57HS100-4204 1.8 100 4.2 0.75 3 3 4 1100 700 1.3
JK57HS112-3004 1.8 112 3 1.6 7.5 3 4 1200 800 1.4
JK57HS112-4204 1.8 112 4.2 0.9 3.8 3.1 4 1200 800 1.4

###

Model No. Wiring  Diagram Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
(L)mm A Ω mH N.m No. g.cm g.cm2 Kg
JK60HS56-2008 Unipolar 56 2 1.8 3 1.17 8 700 300 0.77
Parallel 2.8 0.9 3.6 1.65
Tandem 1.4 3.6 14.4 1.65
JK60HS67-2008 Unipolar 67 2 2.4 4.6 1.5 8 900 570 1.2
Parallel 2.8 1.2 4.6 2.1
Tandem 1.4 4.8 18.4 2.1
JK60HS88-2008 Unipolar 88 2 3 6.8 2.2 8 1000 840 1.4
Parallel 2.8 1.5 6.8 3.1
Tandem 1.4 6 27.2 3.1
JK60HS100-2008 Unipolar 100 2 3.2 6.4 2.8 8 1100 980 1.7
Parallel 2.8 1.6 6.4 4
Tandem 1.4 6.4 25.6 4
JK60HS111-2008 Unipolar 111 2 4.4 8.3 3.2 8 1200 1120 1.9
Parallel 2.8 2.2 8.3 4.5
Tandem 1.4 8.8 33.2 4.5

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. Kg.cm g.cm2 Kg
JK86HS68-5904 1.8 67 5.9 0.28 1.7 3.4 4 0.8 1000 1.7
JK86HS68-2808 1.8 67 2.8 1.4 3.9 3.4 8 0.8 1000 1.7
JK86HS78-5504 1.8 78 5.5 0.46 4 4.6 4 1.2 1400 2.3
JK86HS78-4208 1.8 78 4.2 0.75 3.4 4.6 8 1.2 1400 2.3
JK86HS97-4504 1.8 97 4.5 0.66 3 5.8 4 1.7 2100 3
JK86HS97-4008 1.8 97 4 0.98 4.1 4.7 8 1.7 2100 3
JK86HS100-6004 1.8 100 6 0.36 2.8 7 4 1.9 2200 3.1
JK86HS115-6004 1.8 115 6 0.6 6.5 8.7 4 2.4 2700 3.8
JK86HS115-4208 1.8 115 4.2 0.9 6 8.7 8 2.4 2700 3.8
JK86HS126-6004 1.8 126 6 0.58 6.5 6.3 4 2.9 3200 4.5
JK86HS155-6004 1.8 155 6 0.68 9 13 4 3.6 4000 5.4
JK86HS155-4208 1.8 155 4.2 1.25 8 12.2 8 3.6 4000 5.4

###

Model Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. kg.cm g.cm2 Kg
JK110HS99-5504 1.8 99 5.5 0.9 12 11.2 4 3 5500 5
JK110HS115-6004 1.8 115 6 0.48 7 12 4 4 7100 6
JK110HS150-6504 1.8 150 6.5 0.8 15 21 4 5.9 10900 8.4
JK110HS165-6004 1.8 165 6 0.9 14 24 4 6.6 12800 9.1
JK110HS201-8004 1.8 201 8 0.67 12 28 4 7.5 16200 11.8

###

Model No. Operating Voltage Rated Current Resistance Inductance Holding Torque Noload Frequency Starting Frequency Mass Motor Length
VDC A Ω mH N.m No. g.cm Kg mm
JK130HS173-6004 80~325 6 0.75 12.6 25 25000 2300 13.3 173
JK130HS229-6004 80~325 6 0.83 13.2 30 25000 2300 18 229
JK130HS257-7004 80~325 7 0.73 11.7 40 23000 2200 19 257
JK130HS285-7004 80~325 7 0.66 10 50 23000 2200 22.5 285

/ Piece
|
10 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Printing Equipment
Speed: Constant Speed
Number of Stator: Two-Phase

###

Customization:
Available

|


###

Motor series Phase No. Step angle Motor length Motor size Leads No. Holding torque
Nema 8 2 phase 1.8 degree 30~42mm 20x20mm 4 180~300g.cm
Nema 11 2 phase 1.8 degree 32~51mm 28x28mm 4 or 6 430~1200g.cm
Nema 14 2 phase 0.9 or 1.8 degree 27~42mm 35x35mm 4 1000~2000g.cm
Nema 16 2 phase 1.8 degree 20~44mm 39x39mm 4 or 6 650~2800g.cm
Nema 17 2 phase 0.9 or 1.8 degree 25~60mm 42x42mm 4 or 6 1.5~7.3kg.cm
Nema 23 2 phase 0.9 or 1.8 degree 41~112mm 57x57mm 4 or 6 or 8 0.39~3.1N.m
3 phase 1.2 degree 42~79mm 57x57mm 0.45~1.5N.m
Nema 24 2 phase 1.8 degree 56~111mm 60x60mm 8 1.17~4.5N.m
Nema 34 2 phase 1.8 degree 67~155mm 86x86mm 4 or 8 3.4~12.2N.m
3 phase 1.2 degree 65~150mm 86x86mm 2~7N.m
Nema 42 2 phase 1.8 degree 99~201mm 110x110mm 4 11.2~28N.m
3 phase 1.2 degree 134~285mm 110x110mm 8~25N.m
Nema 52 2 phase 1.8 degree 173~285mm 130x130mm 4 13.3~22.5N.m
3 phase 1.2 degree 173~285mm 130x130mm 13.3~22.5N.m
Above only for representative products, products of special request can be made according to the customer request.

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Mass
( °) (L)mm A Ω mH g.cm No. kg
JK20HS30-0604 1.8 30 0.6 18 3.2 180 4 0.06
JK20HS33-0604 1.8 33 0.6 6.5 1.7 200 4 0.07
JK20HS38-0604 1.8 38 0.6 10 5.5 300 4 0.08
JK20HS42-0804 1.8 42 0.8 5.4 1.5 400 4 0.09

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm2 Kg
JK28HS32-0674 1.8 32 0.67 5.6 3.4 600 4 9 0.11
JK28HS32-0956 1.8 32 0.95 2.8 0.8 430 6 9 0.11
JK28HS45-0956 1.8 45 0.95 3.4 1.2 750 6 12 0.14
JK28HS45-0674 1.8 45 0.67 6.8 4.9 950 4 12 0.14
JK28HS51-0956 1.8 51 0.95 4.6 1.8 900 6 18 0.2
JK28HS51-0674 1.8 51 0.67 9.2 7.2 1200 4 18 0.2

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm g.cm2 Kg
JK35HS28-0504 1.8 28 0.5 20 14 1000 4 80 11 0.13
JK35HS34-1004 1.8 34 1 2.7 4.3 1400 4 100 13 0.17
JK35HS42-1004 1.8 42 1 3.8 3.5 2000 4 125 23 0.22

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm No. g.cm g.cm2 Kg
JK39HY20-0404 1.8 20 0.4 6.6 7.5 650 4 50 11 0.12
JK39HY20-0506 1.8 20 0.5 13 7.5 800 6 50 11 0.12
JK39HY34-0404 1.8 34 0.4 30 32 2100 4 120 20 0.18
JK39HY34-0306 1.8 34 0.3 40 20 1300 6 120 20 0.18
JK39HY38-0504 1.8 38 0.5 24 45 2900 4 180 24 0.2
JK39HY38-0806 1.8 38 0.8 7.5 6 2000 6 180 24 0.2
JK39HY44-0304 1.8 44 0.3 40 100 2800 4 250 40 0.25

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HS25-0404 1.8 25 0.4 24 36 1.8 4 75 20 0.15
JK42HS28-0504 1.8 28 0.5 20 21 1.5 4 85 24 0.22
JK42HS34-1334 1.8 34 1.33 2.1 2.5 2.2 4 120 34 0.22
JK42HS34-0406 1.8 34 0.4 24 15 1.6 6 120 34 0.22
JK42HS34-0956 1.8 34 0.95 4.2 2.5 1.6 6 120 34 0.22
JK42HS40-0406 1.8 40 0.4 30 30 2.6 6 150 54 0.28
JK42HS40-1684 1.8 40 1.68 1.65 3.2 3.6 4 150 54 0.28
JK42HS40-1206 1.8 40 1.2 3 2.7 2.9 6 150 54 0.28
JK42HS48-0406 1.8 48 0.4 30 25 3.1 6 260 68 0.35
JK42HS48-1684 1.8 48 1.68 1.65 2.8 4.4 4 260 68 0.35
JK42HS48-1206 1.8 48 1.2 3.3 2.8 3.17 6 260 68 0.35
JK42HS60-0406 1.8 60 0.4 30 39 6.5 6 280 102 0.5
JK42HS60-1704 1.8 60 1.7 3 6.2 7.3 4 280 102 0.5
JK42HS60-1206 1.8 60 1.2 6 7 5.6 6 280 102 0.5

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. g.cm g.cm2 Kg
JK57HS41-1006 1.8 41 1 7.1 8 0.48 6 250 150 0.47
JK57HS41-2008 1.8 41 2 1.4 1.4 0.39 8 250 150 0.47
JK57HS41-2804 1.8 41 2.8 0.7 1.4 0.55 4 250 150 0.47
JK57HS51-1006 1.8 51 1 6.6 8.2 0.72 6 300 230 0.59
JK57HS51-2008 1.8 51 2 1.8 2.7 0.9 8 300 230 0.59
JK57HS51-2804 1.8 51 2.8 0.83 2.2 1.01 4 300 230 0.59
JK57HS56-2006 1.8 56 2 1.8 2.5 0.9 6 350 280 0.68
JK57HS56-2108 1.8 56 2.1 1.8 2.5 1 8 350 280 0.68
JK57HS56-2804 1.8 56 2.8 0.9 2.5 1.2 4 350 280 0.68
JK57HS64-2804 1.8 64 2.8 0.8 2.3 1 4 400 300 0.75
JK57HS76-2804 1.8 76 2.8 1.1 3.6 1.89 4 600 440 1.1
JK57HS76-3006 1.8 76 3 1 1.6 1.35 6 600 440 1.1
JK57HS76-3008 1.8 76 3 1 1.8 1.5 8 600 440 1.1
JK57HS82-3004 1.8 82 3 1.2 4 2.1 4 1000 600 1.2
JK57HS82-4008 1.8 82 4 0.8 1.8 2 8 1000 600 1.2
JK57HS82-4204 1.8 82 4.2 0.7 2.5 2.2 4 1000 600 1.2
JK57HS100-4204 1.8 100 4.2 0.75 3 3 4 1100 700 1.3
JK57HS112-3004 1.8 112 3 1.6 7.5 3 4 1200 800 1.4
JK57HS112-4204 1.8 112 4.2 0.9 3.8 3.1 4 1200 800 1.4

###

Model No. Wiring  Diagram Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
(L)mm A Ω mH N.m No. g.cm g.cm2 Kg
JK60HS56-2008 Unipolar 56 2 1.8 3 1.17 8 700 300 0.77
Parallel 2.8 0.9 3.6 1.65
Tandem 1.4 3.6 14.4 1.65
JK60HS67-2008 Unipolar 67 2 2.4 4.6 1.5 8 900 570 1.2
Parallel 2.8 1.2 4.6 2.1
Tandem 1.4 4.8 18.4 2.1
JK60HS88-2008 Unipolar 88 2 3 6.8 2.2 8 1000 840 1.4
Parallel 2.8 1.5 6.8 3.1
Tandem 1.4 6 27.2 3.1
JK60HS100-2008 Unipolar 100 2 3.2 6.4 2.8 8 1100 980 1.7
Parallel 2.8 1.6 6.4 4
Tandem 1.4 6.4 25.6 4
JK60HS111-2008 Unipolar 111 2 4.4 8.3 3.2 8 1200 1120 1.9
Parallel 2.8 2.2 8.3 4.5
Tandem 1.4 8.8 33.2 4.5

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. Kg.cm g.cm2 Kg
JK86HS68-5904 1.8 67 5.9 0.28 1.7 3.4 4 0.8 1000 1.7
JK86HS68-2808 1.8 67 2.8 1.4 3.9 3.4 8 0.8 1000 1.7
JK86HS78-5504 1.8 78 5.5 0.46 4 4.6 4 1.2 1400 2.3
JK86HS78-4208 1.8 78 4.2 0.75 3.4 4.6 8 1.2 1400 2.3
JK86HS97-4504 1.8 97 4.5 0.66 3 5.8 4 1.7 2100 3
JK86HS97-4008 1.8 97 4 0.98 4.1 4.7 8 1.7 2100 3
JK86HS100-6004 1.8 100 6 0.36 2.8 7 4 1.9 2200 3.1
JK86HS115-6004 1.8 115 6 0.6 6.5 8.7 4 2.4 2700 3.8
JK86HS115-4208 1.8 115 4.2 0.9 6 8.7 8 2.4 2700 3.8
JK86HS126-6004 1.8 126 6 0.58 6.5 6.3 4 2.9 3200 4.5
JK86HS155-6004 1.8 155 6 0.68 9 13 4 3.6 4000 5.4
JK86HS155-4208 1.8 155 4.2 1.25 8 12.2 8 3.6 4000 5.4

###

Model Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. kg.cm g.cm2 Kg
JK110HS99-5504 1.8 99 5.5 0.9 12 11.2 4 3 5500 5
JK110HS115-6004 1.8 115 6 0.48 7 12 4 4 7100 6
JK110HS150-6504 1.8 150 6.5 0.8 15 21 4 5.9 10900 8.4
JK110HS165-6004 1.8 165 6 0.9 14 24 4 6.6 12800 9.1
JK110HS201-8004 1.8 201 8 0.67 12 28 4 7.5 16200 11.8

###

Model No. Operating Voltage Rated Current Resistance Inductance Holding Torque Noload Frequency Starting Frequency Mass Motor Length
VDC A Ω mH N.m No. g.cm Kg mm
JK130HS173-6004 80~325 6 0.75 12.6 25 25000 2300 13.3 173
JK130HS229-6004 80~325 6 0.83 13.2 30 25000 2300 18 229
JK130HS257-7004 80~325 7 0.73 11.7 40 23000 2200 19 257
JK130HS285-7004 80~325 7 0.66 10 50 23000 2200 22.5 285

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China 12V 24V NEMA 8 11 17 23 24 34 42 52 Mini Micro Ball Screw Linear Geared Closed Loop Stepper Step Stepping Motor Motors with Planetary Gearbox / Brake / Encoder     motor brushesChina 12V 24V NEMA 8 11 17 23 24 34 42 52 Mini Micro Ball Screw Linear Geared Closed Loop Stepper Step Stepping Motor Motors with Planetary Gearbox / Brake / Encoder     motor brushes
editor by czh 2023-03-24

China Wholesale Hot Sale Stepper Motor 2 Phase Nema 23 CNC Kit 1 Nm Stepper motor with high quality

Warranty: 3months-1year
Product Amount: FY56EM3 3rd And 4th Velocity Synchronizer Sliding Collar For 16S221 16S1650 9S1110 Shipping FAQ

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.
Motor

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China Wholesale Hot Sale Stepper Motor 2 Phase Nema 23 CNC Kit 1 Nm Stepper motor     with high qualityChina Wholesale Hot Sale Stepper Motor 2 Phase Nema 23 CNC Kit 1 Nm Stepper motor     with high quality
editor by czh 2023-02-21

China Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W motorbase

Product Description

 

Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Built-in Driver Brushless DC Motor Electrical power 10W Upto 800W 

Merchandise Description

Merchandise Title: Brushless DC Motor

Variety of Stage: 3 Period

Amount of Poles: 4 Poles /8 Poles /ten Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Velocity: 3000rpm /4000rpm /or customized

Rated Torque: Custom-made

Rated Recent: Personalized

Rated Energy: 23w~2500W

Jkongmotor has a wide range of micro motor generation lines in the market, such as Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Equipment Motor, Planetary Gearbox etc. Through technological innovation and customization, we aid you generate outstanding software systems and supply adaptable options for numerous industrial automation conditions.

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Amount Of Section Section 3
Amount Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m .055 .11 .22 .33 .forty four
Rated Current Amps one.two 2 3.6 five.three six.8
Rated Power W 23 forty six 92 138 184
Peak Torque N.m .16 .33 .sixty six one 1.32
Peak Recent Amps three.five 6.eight eleven.5 15.five twenty.five
Back E.M.F V/Krpm 7.eight 7.7 seven.4 seven.3 7.one
Torque Continuous N.m/A .074 .073 .07 .07 .068
Rotor Inertia g.cm2 30 75 119 173 230
Body Size mm 37 47 sixty seven 87 107
Bodyweight Kg .33 .44 .seventy five 1 1.twenty five
Sensor Honeywell
Insulation Course B
Diploma of Defense IP30
Storage Temperature -25~+70ºC
Functioning Temperature -fifteen~+50ºC
Operating Humidity 85% RH or under (no condensation)
Working Environment Outdoor (no direct daylight), no corrosive gas, no flammable fuel, no oil mist, no dust
Altitude 1000 meters or significantly less

Planetary Gearbox Parameters:

56JXE300K
Ring content Metallic
Bearing at output Ball bearings
Max. Radial (12mm from flange) 300N
Max. shaft axial load 200N
Radial play of shaft (in close proximity to to flange) ≤0.08mm
Axial enjoy of shaft ≤0.4mm
Backlash at no-load ≤2.5°
Shaft press fit drive, max 300N

 

Motor Shaft Pinion Specifications
Module 1
No. of enamel 12 fifteen 9
Strain angle 20°
Gap diameter Φ6H7
Reduction ratio 1/4.25  1/15  1/18  1/23  1/52  1/61  1/72  1/96  1/121  1/220  1/260  1/307 one/3.6  1/13  1/43  1/154  1/187 1/5.33  1/28

 

Gearbox Specifications:
Reduction ratio Exact reduction ratio Rated tolerance torque Max momentary tolerance torque Effectiveness L (mm) Excess weight (g)
one/3.6  1/4.25  1/5.33 1/3.6  1/4.25  1/5.33 three N.m Max 9 N.m 90% 37.8±0.5 489
one/13  1/15  1/18  1/23  1/28 one/12.96  1/fifteen.30  1/18.06  1/22.67  1/28.44 twelve N.m Max 36 N.m .81 forty nine.5±0.5 681
1/43  1/52  1/61  1/72  1/96  1/121 one/forty two.69  1/51.84  1/61.20  1/72.25  1/ninety six.33  1/one hundred twenty.89 24 N.m Max seventy two N.m seventy three% sixty.8±0.5 871
one/154  1/187  1/220  1/260  1/307 1/153.69  1/186.62  1/220.32  1/260.10  1/307.06 thirty N.m Max 90 N.m .sixty six seventy one.9±0.5 1066
Input & output exact same rotation direction Motor Max. input pace: <6000rpm Operating temperature range: -15ºC ~ +80ºC

We assist a lot of distinct Gearbox to personalize, this kind of as Planetary Gearbox, Large Precision Planetary Gearbox, Worm gearbox, Eccentric Gearbox and so on. If you have any custom-made needs, speak to us quickly!!!

 

Planetary Gearbox Sort:

 

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Variety Of Phase Section 3
Amount Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m .0625 .a hundred twenty five .185 .25
Peak Recent Amps one.8 3.3 four.eight 6.3
Rated Electrical power W 26 52.5 seventy seven.5 one zero five
Peak Torque N.m .19 .38 .fifty six .seventy five
Peak Present Amps 5.4 ten.6 fifteen.five 20
Back E.M.F V/Krpm 4.1 four.2 4.3 four.three
Torque Continuous N.m/A .039 .04 .041 .041
Rotor Inertia g.cm2 24 48 72 96
Physique Size mm
Bodyweight Kg
Sensor Honeywell
Insulation Class B
Diploma of Defense IP30
Storage Temperature -25~+70ºC
Working Temperature -15~+50ºC
Functioning Humidity 85% RH or below (no condensation)
Operating Environment Outdoor (no immediate daylight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or much less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Stage Period 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Velocity Rpm 3000
Rated Torque N.m .3 .six .9 1.two
Rated Existing Amps two.eight five.2 seven.five 9.five
Rated Electricity W 94 188 283 377
Peak Torque N.m .nine one.8 2.7 three.six
Peak Recent Amps 8.4 15.six 22.five 28.5
Back E.M.F V/Krpm 12.1 twelve.6 twelve.four thirteen.three
Torque Consistent N.m/A .116 .12 .118 .127
Rotor Inertia kg.cm2 .24 .forty eight .72 .96
Physique Size mm 78 99 a hundred and twenty 141
Weight Kg .eighty five one.twenty five 1.65 2.05
Sensor Honeywell
Insulation Course B
Diploma of Defense IP30
Storage Temperature -twenty five~+70ºC
Working Temperature -fifteen~+50ºC
Operating Humidity 85% RH or underneath (no condensation)
Operating Surroundings Outdoor (no direct sunlight), no corrosive gasoline, no flammable gasoline, no oil mist, no dust
Altitude 1000 meters or considerably less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Quantity Of Period Stage 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Velocity Rpm 3000
Rated Torque N.m .35 .seven 1.05 1.four
Rated Recent Amps three five.5 8 10.5
Rated Energy W one hundred ten 220 330 440
Peak Torque N.m 1.05 two.1 three.fifteen four.two
Peak Current Amps nine 16.five 24 31.5
Back again E.M.F V/Krpm thirteen.five thirteen.three thirteen.1 thirteen
Torque Constant N.m/A .13 .127 .126 .124
Rotor Inertia g.cm2 210 420 630 840
Human body Length mm 78 98 118 138
Weight Kg 1.4 2 two.six three.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Functioning Temperature -15~+50ºC
Doing work Humidity 85% RH or underneath (no condensation)
Operating Atmosphere Outdoor (no immediate sunlight), no corrosive fuel, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Quantity Of Period Section 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Velocity Rpm 3000
Rated Torque N.m .35 .seven one.05 1.four 2.1
Rated Existing Amps three six.three 9 eleven.5 18
Rated Electricity W one hundred ten 220 330 440 660
Peak Torque N.m one.05 2.1 3.15 four.two six.three
Peak Recent Amps 9 19 27 35 54
Back again E.M.F V/Krpm 13.seven 13 13.5 thirteen.seven 13.five
Torque Continual N.m/A .thirteen .12 .thirteen .thirteen .thirteen
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm seventy one 84.5 98 111.five 138.5
Bodyweight Kg 1.five one.nine 2.three 2.7 4
Sensor Honeywell
Insulation Course B
Diploma of Security IP30
Storage Temperature -twenty five~+70ºC
Working Temperature -fifteen~+50ºC
Functioning Humidity 85% RH or below (no condensation)
Functioning Surroundings Outdoor (no direct sunlight), no corrosive gas, no flammable fuel, no oil mist, no dust
Altitude 1000 meters or significantly less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Stage Period 3
Amount Of Poles Poles 8
Rated Voltage VDC 310
Rated Pace Rpm 3400
Rated Torque N.m two.38 three.3 five 6.6
Rated Recent Amps .five .six .8 1
Rated Electricity KW .75 1.03 one.57 2.07
Back again E.M.F V/Krpm 91.1 91.one 91.1 88.6
Torque Consistent N.m/A .87 .87 .87 .845
Entire body Duration mm one hundred thirty 155 a hundred and eighty 205
Sensor Honeywell
Insulation Course H

Stepping Motor Personalized

 

Thorough Photographs

                                       Cnc Motor Kits                                                                                                   Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Firm Profile

HangZhou CZPT Co., Ltd was a higher technological innovation industry zone in HangZhou, china. Our items utilised in many varieties of equipment, these kinds of as 3d printer CNC equipment, health-related gear, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other firms to create prolonged-expression cooperation with us.
Company spirit of sincere and great track record, received the recognition and help of the broad masses of clients, at the very same time with the domestic and foreign suppliers near group of passions, the business entered the phase of phase of benign growth, laying a strong foundation for the strategic objective of realizing only truly the sustainable improvement of the organization.

Equipments Display:
Creation Stream:
Package:
Certification:

1. who are we?

We are primarily based in ZheJiang , China, start off from 2011,sell to Domestic Market(26.00%),Western Europe(twenty.00%),North
The usa(twenty.00%),Northern Europe(ten.00%),Japanese Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South The united states(2.00%). There are whole about fifty one-100 folks in our business office.

two. how can we promise high quality?

We are based in ZheJiang , China, begin from 2011,offer to Domestic Market(26.00%),Western Europe(twenty.00%),North
America(twenty.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South The usa(2.00%). There are complete about fifty one-100 individuals in our workplace.

three.what can you acquire from us?

Often a pre-creation sample ahead of mass manufacturing
Often ultimate Inspection prior to cargo

4. why should you get from us not from other suppliers?

Specialist one particular-to-1 motor personalized . The world’s massive business of choice for high quality suppliers . ISO9001:2008 quality management program certification, through the CE, ROHS certification.

5. what providers can we offer?

Accepted Shipping and delivery Phrases: FOB,CFR,CIF,EXW,CIP,FCA,CPT,DDP,DDU,Express Supply,DAF,DES
Approved Payment Currency:USD,EUR,CAD,HKD,GBP,CNY
Acknowledged Payment Kind: T/T,L/C,D/P D/A,MoneyGram,Credit history Card,PayPal,Western Union,Money,Escrow
Language Spoken:English,Chinese

US $8-50
/ Piece
|
10 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Compound

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller

###

Customization:

###

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

56JXE300K
Ring material Metal
Bearing at output Ball bearings
Max. Radial (12mm from flange) 300N
Max. shaft axial load 200N
Radial play of shaft (near to flange) ≤0.08mm
Axial play of shaft ≤0.4mm
Backlash at no-load ≤2.5°
Shaft press fit force, max 300N

###

Motor Shaft Pinion Specifications
Module 1
No. of teeth 12 15 9
Pressure angle 20°
Hole diameter Φ6H7
Reduction ratio 1/4.25  1/15  1/18  1/23  1/52  1/61  1/72  1/96  1/121  1/220  1/260  1/307 1/3.6  1/13  1/43  1/154  1/187 1/5.33  1/28

###

Gearbox Specifications:
Reduction ratio Exact reduction ratio Rated tolerance torque Max momentary tolerance torque Efficiency L (mm) Weight (g)
1/3.6  1/4.25  1/5.33 1/3.6  1/4.25  1/5.33 3 N.m Max 9 N.m 90% 37.8±0.5 489
1/13  1/15  1/18  1/23  1/28 1/12.96  1/15.30  1/18.06  1/22.67  1/28.44 12 N.m Max 36 N.m 0.81 49.5±0.5 681
1/43  1/52  1/61  1/72  1/96  1/121 1/42.69  1/51.84  1/61.20  1/72.25  1/96.33  1/120.89 24 N.m Max 72 N.m 73% 60.8±0.5 871
1/154  1/187  1/220  1/260  1/307 1/153.69  1/186.62  1/220.32  1/260.10  1/307.06 30 N.m Max 90 N.m 0.66 71.9±0.5 1066
Input & output same rotation direction; Motor Max. input speed: <6000rpm; Operating temperature range: -15ºC ~ +80ºC

###

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H
US $8-50
/ Piece
|
10 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Compound

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller

###

Customization:

###

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

56JXE300K
Ring material Metal
Bearing at output Ball bearings
Max. Radial (12mm from flange) 300N
Max. shaft axial load 200N
Radial play of shaft (near to flange) ≤0.08mm
Axial play of shaft ≤0.4mm
Backlash at no-load ≤2.5°
Shaft press fit force, max 300N

###

Motor Shaft Pinion Specifications
Module 1
No. of teeth 12 15 9
Pressure angle 20°
Hole diameter Φ6H7
Reduction ratio 1/4.25  1/15  1/18  1/23  1/52  1/61  1/72  1/96  1/121  1/220  1/260  1/307 1/3.6  1/13  1/43  1/154  1/187 1/5.33  1/28

###

Gearbox Specifications:
Reduction ratio Exact reduction ratio Rated tolerance torque Max momentary tolerance torque Efficiency L (mm) Weight (g)
1/3.6  1/4.25  1/5.33 1/3.6  1/4.25  1/5.33 3 N.m Max 9 N.m 90% 37.8±0.5 489
1/13  1/15  1/18  1/23  1/28 1/12.96  1/15.30  1/18.06  1/22.67  1/28.44 12 N.m Max 36 N.m 0.81 49.5±0.5 681
1/43  1/52  1/61  1/72  1/96  1/121 1/42.69  1/51.84  1/61.20  1/72.25  1/96.33  1/120.89 24 N.m Max 72 N.m 73% 60.8±0.5 871
1/154  1/187  1/220  1/260  1/307 1/153.69  1/186.62  1/220.32  1/260.10  1/307.06 30 N.m Max 90 N.m 0.66 71.9±0.5 1066
Input & output same rotation direction; Motor Max. input speed: <6000rpm; Operating temperature range: -15ºC ~ +80ºC

###

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 meters or less

###

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W     motorbaseChina Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W     motorbase
editor by czh 2023-01-12

China OEM NEMA 23 Small BLDC Brushless DC Motor (57mm) with Low Speed near me factory

Solution Description

I. CH MOTOR – Brushless DC Motor D575(57MM)

Technical specs:

-Rated Energy: forty seven-140W
-Rated Voltage: 36VDC
-Existing: 1.8-5.3A
-Poles No.: 4
-Rated Pace: 3000RPM
-Rated Torque: fifteen-45N. Cm
-Peak Torque: fifty three-156N. Cm
-Length: 52-92mm
-Weight: .55-1.1kg

Drawing:

Specification:
 

Model Rated electrical power Rated voltage Recent Amount of poles Rated speed Rated torque Peak torque Instant consistent Length Bodyweight
W VDC A   rpm N.cm N.cm N.cm/A mm Kg
D575-01518 forty seven 36 1.eight 4   3000   fifteen fifty three 8.7 fifty two .fifty five
D575-03035 94 36 three.5 thirty one zero five 8.seven seventy two .eight
D575- 0571 3 140 36 five.3 forty five 156 eight.seven 92 1.1
 *Note: We can personalize the special pace, Voltage, Assembled size.        Substantial velocity at 4 poles (Traditional). Reduced velocity at 8 poles

About Us:

We specialized in exploring, creating and servicing electrical motors, gearbox and higher precision gears with the small modules.

Soon after years of advancement, we have an unbiased solution layout and R&D staff, provider staff and expert good quality control crew.

What is more, we have 2 joint ventures. A single is found in HangZhou, which produces hybrid stepper motor, valuable linear stepper motor, brushless DC motor, servo motor, stepper motor driver, brushless motor driver, encoder and brake.

Another 1 is located in HangZhou, which creates DC equipment motor. The manufacturing facility has dozens of CNC machines and higher precision examination gear, implements the process management and computerized operation in most generating method.

We also have 2 cooperation factories. 1 is creating AC reversible synchronous motor and AC servo motor, the other 1 is generating linear permanent stepper motor, permanent stepper motors.

Customer’s Visit:

Package deal:

Connected Merchandise:

If you have any concerns, you should get in touch with us.
 

Two varieties of AC motors include: Synchronous: The fact that a synchronous motor rotates at the exact same price as the frequency of the mains current offers the motor its name. A synchronous motor consists of a stator and a rotor. Synchronous motors have a extensive range of purposes. Induction: Induction motors are the most straightforward and strongest motors obtainable. These AC motors consist of two electrical elements: a wound stator and rotor assembly. The existing necessary to turn the rotor is generated by the electromagnetic induction produced by the stator windings. Induction motors are one of the most frequently employed varieties of motors in the planet.
The rotor of a reluctance motor is composed of a sound cast metal portion with a convex toothed rack. Their starting up approach is comparable to an induction motor, but it operates like a synchronous motor. Usually, their rotors have less poles than stators, which minimizes torque ripple and prevents ideal pole alignment, as no torque is produced in that spot. Reluctance motors assortment in electricity ratings from a handful of watts to about 22 kilowatts.

China OEM NEMA 23 Small BLDC Brushless DC Motor (57mm) with Low Speed     near me factory