Tag Archives: gear supplier

China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W vacuum pump connector

Product Description

 

Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

Planetary Gearbox Parameters:

56JXE300K
Ring material Metal
Bearing at output Ball bearings
Max. Radial (12mm from flange) 300N
Max. shaft axial load 200N
Radial play of shaft (near to flange) ≤0.08mm
Axial play of shaft ≤0.4mm
Backlash at no-load ≤2.5°
Shaft press fit force, max 300N

 

Motor Shaft Pinion Specifications
Module 1
No. of teeth 12 15 9
Pressure angle 20°
Hole diameter Φ6H7
Reduction ratio 1/4.25  1/15  1/18  1/23  1/52  1/61  1/72  1/96  1/121  1/220  1/260  1/307 1/3.6  1/13  1/43  1/154  1/187 1/5.33  1/28

 

Gearbox Specifications:
Reduction ratio Exact reduction ratio Rated tolerance torque Max momentary tolerance torque Efficiency L (mm) Weight (g)
1/3.6  1/4.25  1/5.33 1/3.6  1/4.25  1/5.33 3 N.m Max 9 N.m 90% 37.8±0.5 489
1/13  1/15  1/18  1/23  1/28 1/12.96  1/15.30  1/18.06  1/22.67  1/28.44 12 N.m Max 36 N.m 0.81 49.5±0.5 681
1/43  1/52  1/61  1/72  1/96  1/121 1/42.69  1/51.84  1/61.20  1/72.25  1/96.33  1/120.89 24 N.m Max 72 N.m 73% 60.8±0.5 871
1/154  1/187  1/220  1/260  1/307 1/153.69  1/186.62  1/220.32  1/260.10  1/307.06 30 N.m Max 90 N.m 0.66 71.9±0.5 1066
Input & output same rotation direction; Motor Max. input speed: <6000rpm; Operating temperature range: -15ºC ~ +80ºC

We support many different Gearbox to customize, such as Planetary Gearbox, High Precision Planetary Gearbox, Worm gearbox, Eccentric Gearbox and so on. If you have any customized requirements, contact us immediately!!!

 

Planetary Gearbox Type:

 

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

 

Detailed Photos

                                       Cnc Motor Kits                                                                                                   Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

1. who are we?

We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.

2. how can we guarantee quality?

We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.

3.what can you buy from us?

Always a pre-production sample before mass production;
Always final Inspection before shipment;

4. why should you buy from us not from other suppliers?

Professional one-to-1 motor customized . The world’s large enterprise of choice for high quality suppliers . ISO9001:2008 quality management system certification, through the CE, ROHS certification.

5. what services can we provide?

Accepted Delivery Terms: FOB,CFR,CIF,EXW,CIP,FCA,CPT,DDP,DDU,Express Delivery,DAF,DES;
Accepted Payment Currency:USD,EUR,CAD,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Cash,Escrow;
Language Spoken:English,Chinese

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Compound
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What factors should be considered when selecting a brushless motor for a specific application?

When selecting a brushless motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here are the key factors to take into account:

1. Power and Torque Requirements:

Determine the power and torque requirements of the application. This includes considering the desired operating speed, acceleration, and load characteristics. Select a brushless motor that can deliver the required power and torque output within the application’s operating range. Consider factors such as the motor’s power rating, torque density, and speed-torque characteristics.

2. Size and Form Factor:

Evaluate the space available for motor installation. Consider the physical dimensions and form factor of the motor to ensure it can fit within the application’s constraints. Additionally, consider the weight of the motor, especially in applications where weight is a critical factor, such as drones or portable devices.

3. Environmental Conditions:

Assess the environmental conditions in which the motor will operate. Consider factors such as temperature extremes, humidity, dust, and vibration levels. Choose a brushless motor that is designed to withstand and perform reliably in the specific environmental conditions of the application. Look for motors with appropriate protection ratings (e.g., IP ratings) and robust construction.

4. Efficiency and Energy Consumption:

Consider the desired energy efficiency of the application. Select a brushless motor with high efficiency to minimize energy consumption and maximize overall system efficiency. Efficiency can be influenced by factors such as motor design, winding configuration, and the use of advanced control techniques. Look for motors with high efficiency ratings or specific certifications, such as IE (International Efficiency) classifications.

5. Control and Feedback Requirements:

Evaluate the control and feedback requirements of the application. Determine if sensorless control or position feedback through sensors (e.g., encoders) is necessary for precise speed or position control. Consider the compatibility of the motor’s control interfaces and communication protocols with the application’s control system. Some applications may require motors with built-in control electronics or compatibility with specific motor controllers.

6. Operating Voltage and Power Supply:

Determine the available power supply and the operating voltage range of the application. Select a brushless motor that operates within the available voltage range and is compatible with the power supply infrastructure. Consider factors such as voltage ratings, current requirements, and the availability of appropriate power supply units or motor drives.

7. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the application. Consider factors such as the motor’s rated lifetime, bearing type, insulation class, and overall build quality. Look for motors from reputable manufacturers with a track record of producing reliable and durable products. Consider the availability of maintenance and support services.

8. Cost and Budget:

Consider the cost and budget limitations of the application. Balance the desired motor performance and features with the available budget. Compare the costs of different motor options, taking into account factors such as initial purchase cost, maintenance requirements, and potential energy savings over the motor’s lifetime.

9. Application-Specific Considerations:

Take into account any application-specific requirements or constraints. This may include factors such as regulatory compliance, specific certifications (e.g., safety or industry-specific certifications), compatibility with other system components, and any unique operational or functional requirements of the application.

By carefully considering these factors, you can select a brushless motor that is well-suited for the specific application, ensuring optimal performance, efficiency, reliability, and compatibility.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

In which industries are brushless motors commonly employed, and what are their key roles?

Brushless motors find applications in a wide range of industries, thanks to their numerous advantages and capabilities. Here are some of the industries where brushless motors are commonly employed and their key roles:

1. Automotive Industry:

In the automotive industry, brushless motors are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They play a crucial role in providing propulsion for these vehicles, driving the wheels and ensuring efficient power delivery. Brushless motors offer high efficiency, precise control, and fast acceleration, making them ideal for electric drivetrains. Additionally, they are employed in various automotive subsystems such as electric power steering, HVAC systems, cooling fans, and braking systems.

2. Aerospace and Aviation:

Brushless motors have significant applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations. Their high power-to-weight ratio, compact size, and high-speed capabilities make them well-suited for aerospace requirements.

3. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They power robotic arms, joints, and grippers, enabling accurate and controlled movements. Brushless motors offer high torque, precise position control, and rapid acceleration, making them vital for industrial robotics, collaborative robots (cobots), and automated manufacturing processes. Their compact size and efficiency also contribute to the design and performance of robotic systems.

4. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes. Their ability to handle high loads, operate at high speeds, and offer precise control makes them valuable in demanding industrial environments.

5. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of the industries where brushless motors are commonly employed. Their efficiency, reliability, precise control, compact size, and high-performance characteristics make them versatile and valuable in many other sectors as well. As technology continues to advance, brushless motors are likely to find new applications and play increasingly important roles in various industries.

China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W   vacuum pump connector	China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W   vacuum pump connector
editor by CX 2024-05-14

China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W vacuum pump and compressor

Product Description

Brushed or Brushless DC Motors, Customized Specifications, OEM/ODM

Option for :
Customized shaft, performance, voltage, mounting, lead wires..

Option for :
Electric Brake, Planetary Gearbox, Worm Gearbox, Encoder, Controller Integrated

1. BRUSHED DC MOTOR :

Voltage 12v, 24v, 36v, 48v, upto 310vdc

power 5w  to 1000w

speed 1pm upto 10000rpm 

Dia. 30mm, 32mm, 36mm, 38mm, 42mm, 52mm, 54mm, 63mm, 70mm, 76mm, 80mm, 90mm, 110mm

Belows are some typical models,

2. BRUSHLESS DC MOTOR :
 

Voltage 12v, 24v, 36v, 48v, upto 380vdc

power 5w  to 2000w

speed 1pm upto 15000rpm 

Size 28mm, 30mm, 36mm, 42mm, 57mm, 60mm, 63mm, 70mm, 80mm, 86mm, 110mm

Bearing High quality ball bearing
Poles  4- poles 8-poles 12-poles
Protection class IP40 IP55 option
Insulation class class: F

Belows are some typical models,

Below are only some typical models for reference.

63ZYT Series Permanent magnet Brushed Dc Motors

57HBL Series Brushless Dc Motors

56JXE300K. 63ZYT Series Dc Planetary Gear Motor

56JXE300K. 57HBL Series Brushless Dc Planetary Gear Motor

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Machine, Robot
Operating Speed: Constant Speed
Excitation Mode: Pm
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W   vacuum pump and compressor	China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W   vacuum pump and compressor
editor by CX 2024-05-09

China manufacturer CHINAMFG Customized 1nm 600rpm 48V 600W Brushless DC Gear Motor 12V 500W supplier

Product Description

Product Description

Feature: 

A. High power range from 75W to 15KW
B. Dia: 57mm-180mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
K.High-performance and stable matching driver and controller

Δ Kindly remind: As different customers may need different motor parameter for fitting your equipment. If below motor can’t fit your need, please kindly send inquiry to us with information for rated power or torque,rated speed, and rated voltage for our new size drawing making for you. CLICK HERE to contact me. Thanks a lot!

Dimensions (Unit: mm )
Mounting screws are included with gear head.

Gearbox Specification:

Gearbox Type

PLF90/PLE90

ZPLF90/ZPLE90

Deceleration stage

1

2

3

1

2

3

Length

153

176.5

199.5

187.5

222

245.5

Reduction ratio

Level 1: 3, 4, 5, 7, 10
Level 2: 16, 20, 25, 28, 35, 40, 70
Level 3: 64, 80, 100, 125, 140, 175, 200, 250

110mm 1000W BLDC motor with PLF90/PLE90 Planetary Gearbox 

Other Motor Specification Form: 
Δ Motor interface, Voltage, Speed can be customized.

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Motor Flange Size

Δ More Motor Flange Size to choose, if you need other size. Welcome to contact us to custom.

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 330/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

Are there advancements or innovations in brushless motor technology worth noting?

Yes, there have been significant advancements and innovations in brushless motor technology that are worth noting. These advancements have led to improved performance, efficiency, and versatility of brushless motors across various industries. Here’s a detailed explanation of some notable advancements:

1. High-Efficiency Designs:

Advancements in brushless motor design have led to increased efficiency. Motor manufacturers have focused on optimizing the motor’s electromagnetic design, reducing internal power losses, and improving overall energy conversion efficiency. This has resulted in brushless motors with higher power density, improved torque-to-weight ratios, and reduced energy consumption. These high-efficiency designs have found applications in sectors such as electric vehicles, renewable energy systems, and industrial automation, where energy efficiency is crucial.

2. Advanced Control Techniques:

The development of advanced control techniques has greatly enhanced the performance and functionality of brushless motors. Motor control algorithms, such as sensorless control and field-oriented control (FOC), enable precise control of motor speed, torque, and position. These techniques make brushless motors more responsive, efficient, and capable of delivering smooth and precise motion control. Advanced control techniques have revolutionized applications such as robotics, drones, CNC machines, and electric propulsion systems.

3. Integrated Electronics:

Advancements in electronics integration have led to the development of brushless motors with integrated control electronics. These motors, often referred to as “smart” or “intelligent” motors, incorporate built-in motor controllers, sensors, and communication interfaces. The integration of electronics simplifies motor installation, reduces wiring complexity, and enables seamless integration with control systems. Smart brushless motors find applications in automation, robotics, and Internet of Things (IoT) devices, where compactness, ease of use, and connectivity are essential.

4. Sensor Technology:

New sensor technologies have emerged to enhance the performance and reliability of brushless motors. Hall effect sensors and encoders are commonly used in brushless motors to provide feedback on rotor position, enabling precise control and commutation. Recent advancements in sensor technologies have led to the development of more compact, accurate, and durable sensors. Additionally, the integration of sensorless control methods, which rely on motor voltage and current measurements, has eliminated the need for position sensors in some applications, reducing cost and complexity.

5. Materials and Manufacturing:

Advancements in materials and manufacturing techniques have contributed to the improvement of brushless motor performance. The use of high-performance magnet materials, such as neodymium magnets, has increased motor power density and efficiency. Advanced manufacturing processes, such as precision machining and automated assembly, have improved the consistency and quality of brushless motors. Additionally, advancements in thermal management techniques and materials have enabled brushless motors to operate at higher temperatures, expanding their suitability for demanding environments.

6. Miniaturization and Integration:

Brushless motors have seen advancements in miniaturization and integration, allowing for compact and versatile designs. Miniature brushless motors are now available in smaller form factors, making them suitable for applications with limited space, such as medical devices, drones, and consumer electronics. Furthermore, the integration of multiple motors within a single housing, known as multi-axis or multi-DOF systems, has enabled complex motion control and robotics applications, including robotic arms and articulated mechanisms.

7. Application-Specific Customization:

Advancements in brushless motor technology have also facilitated application-specific customization. Motor manufacturers are increasingly offering customization options to meet the specific needs and requirements of various industries. This includes tailoring motor designs, winding configurations, cooling systems, and control parameters to optimize performance and efficiency for specific applications. Customization allows for better integration, improved performance, and enhanced reliability in diverse industries such as aerospace, automotive, and industrial automation.

In summary, advancements and innovations in brushless motor technology have resulted in higher efficiency designs, advanced control techniques, integrated electronics, improved sensor technology, enhanced materials and manufacturing processes, miniaturization and integration, as well as application-specific customization. These advancements have expanded the capabilities and applications of brushless motors, making them indispensable in numerous industries, ranging from automotive and robotics to renewable energy and consumer electronics.

brushless motor

What is the significance of commutation in brushless motor operation, and how is it achieved?

Commutation is a critical aspect of brushless motor operation as it determines the timing and sequence of current flow in the motor windings. It is the process by which the motor’s magnetic field is switched to generate continuous rotation. The significance of commutation lies in its ability to maintain proper alignment between the magnetic field produced by the stator and the rotor’s permanent magnets, resulting in smooth and efficient motor operation. Here’s a detailed explanation of the significance of commutation in brushless motor operation and how it is achieved:

1. Magnetic Field Alignment: Commutation ensures that the magnetic field produced by the motor’s stator windings is properly aligned with the permanent magnets on the rotor. This alignment is crucial for generating the necessary torque to drive the rotor and produce rotation. By switching the current flow in the motor windings at the right time and in the right sequence, commutation ensures that the stator’s magnetic field interacts effectively with the rotor’s magnets, producing continuous and smooth rotation.

2. Efficient Power Conversion: Commutation plays a vital role in efficient power conversion within the brushless motor. As the current flows through the motor windings, commutation switches the current path to maintain the desired direction of rotation. By timely switching the current flow, commutation minimizes power losses and maximizes the energy transfer between the power supply and the motor. This efficient power conversion results in improved motor performance, higher energy efficiency, and reduced heat generation.

3. Elimination of Brushes and Commutators: Unlike brushed motors that rely on mechanical brushes and commutators for current switching, brushless motors achieve commutation electronically. This eliminates the need for brushes and commutators, which are prone to wear, friction, and electrical arcing. By replacing these mechanical components with solid-state electronic commutation, brushless motors offer several advantages, including reduced maintenance requirements, longer lifespan, and improved reliability.

4. Precise Speed Control: Commutation in brushless motors enables precise speed control. By accurately timing and sequencing the current flow in the motor windings, the control system of a brushless motor can regulate the motor’s rotational speed. This precise speed control is crucial in applications that require specific speed requirements, such as robotics, electric vehicles, and industrial automation.

5. Commutation Methods: Brushless motors achieve commutation through various methods, the most common being sensor-based commutation and sensorless commutation. Sensor-based commutation utilizes position sensors, such as Hall effect sensors or encoders, to detect the rotor’s position and determine the appropriate timing and sequence of current switching. Sensorless commutation, on the other hand, estimates the rotor position based on the back electromotive force (EMF) generated in the motor windings. Advanced control algorithms and signal processing techniques are employed to accurately estimate the rotor position and achieve precise commutation without the need for additional sensors.

In summary, commutation is of significant importance in brushless motor operation. It ensures proper alignment of the magnetic fields, enables efficient power conversion, eliminates mechanical wear components, allows for precise speed control, and contributes to the overall performance and reliability of brushless motors. Through sensor-based or sensorless commutation methods, brushless motors achieve accurate and timely switching of current flow, resulting in smooth rotation and optimal motor performance.

brushless motor

What are the primary advantages of using brushless motors in various applications?

Brushless motors offer several advantages that make them preferred choices in various applications. Here are the primary advantages of using brushless motors:

1. High Efficiency:

Brushless motors are known for their high efficiency. The absence of brushes and commutators reduces friction and electrical losses, resulting in improved power conversion and energy efficiency. This efficiency translates into lower power consumption, reduced heat generation, and longer battery life in battery-powered applications. High efficiency makes brushless motors suitable for applications where energy efficiency is crucial, such as electric vehicles, renewable energy systems, and battery-operated devices.

2. Increased Reliability:

Brushless motors offer increased reliability compared to brushed motors. The lack of brushes and commutators eliminates common points of failure in brushed motors. Brushes can wear out and require periodic replacement, while commutators can experience electrical arcing and wear. By removing these components, brushless motors have longer lifespans, reduced maintenance requirements, and higher overall reliability. This advantage is particularly important in critical applications where downtime and maintenance costs must be minimized.

3. Precise Speed and Position Control:

Brushless motors provide precise speed and position control, making them suitable for applications that require accurate motion control. The electronic commutation in brushless motors allows for precise monitoring and adjustment of motor parameters, such as speed, torque, and direction. This level of control enables smooth and precise movements, making brushless motors ideal for robotics, CNC machines, automation systems, and other applications that demand precise positioning and motion control.

4. Compact Size and High Power Density:

Brushless motors have a compact design and high power density, making them suitable for applications where space is limited. The absence of brushes and commutators allows for a more streamlined motor design, reducing the overall size and weight of the motor. This compact size makes brushless motors ideal for applications with size constraints, such as drones, portable devices, and small appliances. Despite their compact size, brushless motors can deliver high power output, making them capable of driving demanding applications.

5. Reduced Electromagnetic Interference (EMI):

Brushless motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless motors produces smoother and more controlled current waveforms, resulting in reduced EMI. This advantage is particularly important in applications where EMI can interfere with sensitive electronics or cause electromagnetic compatibility (EMC) issues. Brushless motors are commonly used in medical equipment, telecommunications, and audio/video equipment, where minimizing EMI is critical.

6. Higher Speed and Acceleration Capability:

Brushless motors offer higher speed and acceleration capabilities compared to brushed motors. The absence of brushes reduces friction and allows brushless motors to achieve higher rotational speeds. Additionally, the electronic commutation enables faster switching and control, resulting in faster acceleration and deceleration. These characteristics make brushless motors suitable for applications that require rapid movements, high-speed operation, and quick response times, such as robotics, industrial automation, and electric vehicles.

These advantages make brushless motors a preferred choice in a wide range of applications, including robotics, electric vehicles, aerospace, industrial automation, medical equipment, consumer electronics, and more. Their high efficiency, reliability, precise control, compact size, reduced EMI, and high-speed capabilities contribute to improved performance and enable innovative designs in various industries.

China manufacturer CHINAMFG Customized 1nm 600rpm 48V 600W Brushless DC Gear Motor 12V 500W   supplier China manufacturer CHINAMFG Customized 1nm 600rpm 48V 600W Brushless DC Gear Motor 12V 500W   supplier
editor by CX 2024-04-15

China Standard Micro Electric AC/DC Gear Brushless Single Phase/Three Phase Asynchronous Stepper Induction Electric/Electrical Motor supplier

Product Description

 

Product Description

 

model Number of poles Phase Rated voltage Rated speed Continuous locked-rotor torque Rated torque Rated power Peak torque
Units     VDC RPM N.m N.m W N.m
42BYA075B030C-02 4 3 24 3000 0.192 0.16 50 0.48

 

model Peak current Torque constant Back EMF Motor length Motor length voltage range Range of rotation weight
Units A Nm/A V/KRPM g.cMoment of inertia mm VDC RPM Kg
42BYA075B030C-02 9.6 0.05 3.947 14.6 134 24~48 1000~3000 1.0 

Product Parameters

Quiet stable and reliable for long life operation

1.Voltage: 24 VDC
2.Number of phases: 3
3.Number of levels: 4
4.Line-to-line resistance: 1.45±10%ohms
5.Line-to-line inductance: 1.27±20%mH
6.Rated current: 3.2A
7.Rated power: 50W
8.No-load speed: 4300 rpm
9.Insulation class: B
10.Reduction ratio: 1:58.22
11.Output torque: 7.5 N.m
12.Output speed: 51.5 rpm
13.We can design the special voltage and shaft and so on

Jintian Imp. & Exp Co. Ltd opened in 2008 to facilitate international trade between China and the rest of the world. The young firm grew quickly, gaining a reputation for integrity, efficiency and astute knowledge of local market.

Throughout its 10 more years history, CHINAMFG has sought to connect customers with opportunities. While that purpose has remained unchanged, CHINAMFG has succeeded by positioning itself where the growth is and by aligning itself to the major economic trends of the time.

After being funded in ZheJiang , China to facilitate local and international trade, CHINAMFG expanded rapidly to capture the increasing flow of commerce between Asia, Europe and North America. Since then, CHINAMFG has continued to grow in line with changing trade patterns and developing markets, pioneering modern international trade practices in many countries. Built over 10 years, this global network is highly distinctive, difficult to replicate and ideally positioned for the world’s top trade corridors.

Our ability to connect customers remains absolutely central to the company’s strategy today, which aims to establish CHINAMFG as the world”s leading international trade company. Above all, we remain dedicated to the purpose that CHINAMFG was founded to serve: Connecting customers to opportunities, enabling businesses to CHINAMFG and economies to prosper, and helping people to fulfill their hopes and dreams.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 162/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

Can you explain the working principle of a brushless AC motor in simple terms?

A brushless AC motor operates based on the principles of electromagnetism and electronic control. Here’s a simplified explanation of the working principle:

A brushless AC motor consists of two main components: a stator and a rotor. The stator is the stationary part of the motor, while the rotor is the rotating part.

The stator contains multiple coils of wire, known as windings, which are evenly spaced around the inner circumference. These windings are energized with alternating current (AC) from an external power source.

The rotor, on the other hand, consists of permanent magnets or electromagnets. The number of magnets corresponds to the number of windings in the stator.

When the AC power is supplied to the stator windings, it creates a rotating magnetic field. This rotating magnetic field induces a magnetic force on the magnets in the rotor, causing the rotor to rotate.

To ensure the rotor rotates in synchronization with the rotating magnetic field, brushless AC motors employ electronic commutation. Electronic sensors, such as Hall effect sensors, are placed inside the motor to detect the position of the rotor magnets.

Based on the input from the sensors, an electronic controller determines the precise timing to switch the current flow in the stator windings. By switching the current at the right moment, the controller ensures that the magnetic force on the rotor magnets is always in the proper direction to generate continuous rotation.

This process of electronic commutation and precise switching of current in the stator windings allows for accurate control of the motor’s speed, torque, and direction of rotation.

Overall, the working principle of a brushless AC motor involves the creation of a rotating magnetic field in the stator through energized windings, and the use of electronic commutation to accurately control the rotation of the rotor magnets. This combination of electromagnetism and electronic control enables brushless AC motors to provide efficient and precise motor operation in various applications.

brushless ac motor

Are there different configurations or types of brushless AC motors available?

Yes, there are different configurations and types of brushless AC motors available, each designed for specific applications and operating requirements. Here’s a detailed explanation of some common configurations and types of brushless AC motors:

1. Outrunner Motors: Outrunner motors, also known as external rotor motors, have a stationary core with windings and a rotating outer shell that houses the magnets. In this configuration, the rotor surrounds the stator. Outrunner motors are known for their high torque output, making them suitable for applications that require high starting torque and low-speed operation, such as robotics, electric vehicles, and industrial machinery.

2. Inrunner Motors: Inrunner motors have a stationary outer shell with windings and a rotating inner core that contains the magnets. Unlike outrunner motors, the stator surrounds the rotor in this configuration. Inrunner motors are typically smaller and lighter than outrunner motors and are commonly used in applications that require high RPMs and compact size, such as drones, model aircraft, and small appliances.

3. Slotless Motors: Slotless motors feature a core without any iron slots, resulting in a smooth cylindrical shape. These motors offer several advantages, including reduced cogging (torque ripple), higher efficiency, and lower inductance. Slotless motors are commonly used in applications that require precise control and smooth operation, such as robotics, medical devices, and precision equipment.

4. Inner Rotor/Outer Stator Motors: In this configuration, the rotor is located inside the stator, and the stator surrounds the rotor. This design allows for easy heat dissipation and efficient cooling, making these motors suitable for high-power applications that require good thermal management, such as industrial machinery, electric vehicles, and HVAC systems.

5. Direct Drive Motors: Direct drive motors, also known as torque motors, eliminate the need for mechanical transmission components, such as gears or belts, by directly coupling the load to the motor. This configuration provides high torque, improved efficiency, and reduced maintenance. Direct drive motors are commonly used in applications that require precise motion control, such as CNC machines, robotics, and semiconductor manufacturing equipment.

6. Modular Motors: Modular brushless AC motors consist of separate rotor and stator modules that can be easily assembled or disassembled. This modular design offers flexibility in terms of motor size, power output, and customization options. Modular motors find applications in various industries, including automotive, aerospace, and industrial automation.

These are just a few examples of the different configurations and types of brushless AC motors available. Each configuration has its own advantages and is suitable for specific applications based on factors such as torque requirements, speed range, size constraints, efficiency, and control precision. The choice of motor configuration depends on the specific needs of the application and the desired performance characteristics.

brushless ac motor

How do brushless AC motors contribute to the efficiency of HVAC systems?

Brushless AC motors play a significant role in improving the efficiency of HVAC (heating, ventilation, and air conditioning) systems. These motors offer several advantages over traditional motor technologies, such as brushed motors or older induction motors. Here’s a detailed explanation of how brushless AC motors contribute to the efficiency of HVAC systems:

  • Higher Energy Efficiency: Brushless AC motors are known for their higher energy efficiency compared to brushed motors or older motor technologies. They achieve this efficiency through various mechanisms:
    • Reduced Energy Losses: Brushless AC motors eliminate the need for brushes and commutators, which are sources of friction, wear, and electrical losses in brushed motors. By eliminating these components, brushless AC motors reduce energy losses and improve overall efficiency.
    • Better Motor Control: Brushless AC motors utilize advanced control techniques, such as sensor feedback and precise voltage and frequency control, to optimize motor performance. This control allows for smoother operation, improved speed regulation, and reduced energy consumption.
    • Variable Speed Operation: Brushless AC motors can operate at variable speeds, allowing them to adjust their power output to match the required load. By running the motor at the most efficient speed for a given operating condition, energy consumption is minimized, resulting in higher overall system efficiency.
  • Improved System Performance: The efficiency of an HVAC system is not solely dependent on the motor itself but also on how the motor interacts with the rest of the system. Brushless AC motors contribute to improved system performance in the following ways:
    • Enhanced Control and Integration: Brushless AC motors can be easily integrated into advanced control systems, allowing for precise regulation of motor speed, airflow, and temperature. This integration enables more efficient operation of the entire HVAC system, optimizing energy usage and improving comfort.
    • Variable Air Volume (VAV) Systems: Brushless AC motors are well-suited for VAV systems commonly used in HVAC applications. VAV systems adjust the airflow based on the cooling or heating demands of different zones. Brushless AC motors can modulate their speed and power output to match the varying airflow requirements, resulting in energy savings and improved comfort.
    • Improved Fan Efficiency: HVAC systems often rely on fans to circulate air. Brushless AC motors, with their higher energy efficiency and precise speed control, can drive fans more efficiently, reducing the energy consumed by the fan and improving overall system efficiency.
  • Longer Lifespan and Durability: Brushless AC motors are generally more reliable and durable compared to brushed motors. They have fewer moving parts, eliminating the wear and tear associated with brushes and commutators. This increased durability reduces maintenance needs and extends the lifespan of the motor, contributing to long-term efficiency gains in HVAC systems.
  • Reduced Noise and Vibration: Brushless AC motors operate with reduced noise and vibration levels compared to some other motor types. This characteristic enhances the overall comfort of HVAC systems and reduces the need for additional soundproofing measures, contributing to a more efficient and pleasant environment.

The use of brushless AC motors in HVAC systems offers substantial benefits in terms of energy efficiency, system performance, durability, and comfort. Integrating these motors into HVAC designs can lead to significant energy savings, reduced operating costs, and improved environmental sustainability.

China Standard Micro Electric AC/DC Gear Brushless Single Phase/Three Phase Asynchronous Stepper Induction Electric/Electrical Motor   supplier China Standard Micro Electric AC/DC Gear Brushless Single Phase/Three Phase Asynchronous Stepper Induction Electric/Electrical Motor   supplier
editor by CX 2024-04-15

China supplier Gear Motor, AC Gear Motor, 2gn, 6W, 10W, 15W, 20W, 2gn150k, Yn60-10W, 15W, Worm Gearbox, Brushless Motor vacuum pump diy

Product Description

TaiBang Motor Industrial Group Co., Ltd. Came of ZheJiang Electromotor Industry Co., Ltd. is a professional manufacturer which combined with series gear transmission products of design, manufacture and sale promotion.We have 2 brand CHINAMFG and VTV . It occupied more than 30, 000 square metres, had more than 800 workers and more than 200 sets of advanced equipments, which operated strictly according to ISO9000 Quality management system. It had been approved series certifications of product and system for international and national, consequently, the products had warm welcome at home and overseas. 
  The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motorCH/CV big gear motorsPlanetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

We have been dedicating innovation for technology, system, management and craftwork, and according to guideline of high quality, high standard, precision and zero defect. It is our basic principle to provide consumer satisfied products and service by efficient and perfect distribution net and after service. 

  Our geared motor power range is from 6W-3.7KW(1/125HP to 5HP), the speed ratio is from 1: 3 to 1: 3000, output speed from 0.5rpm-500rpm, 12V,24V,48V,110V-120V, 220V-240V, 380V -415V ,AC and DC motors, all Can be made. Special motors also can be designed and manufactured. 

We have CE and UL certification. And we have exported to UK, Germany, Australia, USA, Canada, Korea, Norway etc. And well known for the world. 

Welcome to OUR FACTORY for business promotion.
Factory address:NO238,Wei20 road, HangZhou Economic Development zone , HangZhou City, ZHangZhoug, China
 
Contact: Qin

BRAND NAME TYPE PRICE
GPG /VTV AC GEAR MOTOR 2RK10GN-C/2GN150K 21

Welcome your visit and enquiry to our factory! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

In what applications are brushless AC motors commonly used?

Brushless AC motors find extensive application in various industries and sectors due to their numerous advantages. Here are some common applications where brushless AC motors are commonly used:

  • Industrial Automation: Brushless AC motors are widely employed in industrial automation systems, including conveyor belts, robotic arms, packaging machinery, and CNC machines. Their precise control, high efficiency, and reliability make them suitable for these demanding applications.
  • Electric Vehicles (EVs): Brushless AC motors are a popular choice for electric vehicles, including electric cars, motorcycles, and scooters. They offer high torque, efficient power conversion, and regenerative braking capabilities, contributing to the overall performance and range of electric vehicles.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often use brushless AC motors in fans and blowers. The motors provide energy-efficient operation, precise airflow control, and quieter performance compared to traditional brushed motors.
  • Aerospace and Aviation: Brushless AC motors are employed in various aerospace and aviation applications, such as aircraft actuators, flight control systems, and auxiliary power units. The motors offer lightweight design, high power density, and reliable operation in demanding environments.
  • Medical Equipment: Many medical devices and equipment, including surgical tools, imaging systems, and laboratory equipment, utilize brushless AC motors. The motors provide precise control, low noise, and long life, ensuring the reliability and effectiveness of medical procedures.
  • Home Appliances: Brushless AC motors are increasingly used in home appliances such as refrigerators, washing machines, and dishwashers. They offer energy-efficient operation, reduced noise, and enhanced durability compared to traditional brushed motors.
  • Renewable Energy: Brushless AC motors play a crucial role in renewable energy systems like wind turbines and solar tracking systems. Their high efficiency and precise control contribute to optimizing energy generation and harnessing renewable resources effectively.
  • Electronics and Computer Cooling: Brushless AC motors are utilized in electronics and computer cooling applications, including fans and heatsinks. The motors provide efficient heat dissipation, reliable cooling, and quiet operation to prevent overheating and ensure the optimal performance of electronic components.

These are just a few examples of the many applications where brushless AC motors are commonly used. Their versatility, efficiency, reliability, and precise control make them an ideal choice across various industries and sectors.

brushless ac motor

Can brushless AC motors be used in both industrial and residential settings?

Yes, brushless AC motors can be used in both industrial and residential settings. The versatility and advantages of brushless AC motors make them suitable for a wide range of applications. Here’s a detailed explanation:

Industrial Applications:

Brushless AC motors are widely used in various industrial applications due to their high efficiency, reliability, and precise control. Some common industrial applications where brushless AC motors are utilized include:

  • Industrial Machinery: Brushless AC motors are often used in industrial machinery such as conveyor systems, pumps, compressors, and fans. Their high torque, variable speed control, and efficient operation make them suitable for driving heavy loads and providing reliable performance in demanding industrial environments.
  • Robotics: Brushless AC motors find extensive use in robotics applications. The precise control capabilities of brushless motors, coupled with their compact size and high power density, make them ideal for powering robotic arms, grippers, and other motion control systems.
  • Automotive: Brushless AC motors are increasingly being employed in electric and hybrid vehicles. They offer high power-to-weight ratios, efficient operation, and regenerative braking capabilities, making them suitable for propulsion systems, power steering, and other automotive applications.
  • Aerospace: Brushless AC motors are used in aerospace applications, including aircraft systems, control surfaces, and landing gear mechanisms. Their reliability, compactness, and high performance make them suitable for the demanding requirements of the aerospace industry.
  • Industrial Automation: Brushless AC motors play a critical role in industrial automation systems. They are used in CNC machines, robotic arms, assembly lines, and other automated processes, providing accurate and reliable motion control.

Residential Applications:

Brushless AC motors are also finding increased use in residential settings, thanks to their energy efficiency, quiet operation, and long lifespan. Some common residential applications where brushless AC motors are utilized include:

  • Appliances: Brushless AC motors are employed in various household appliances such as refrigerators, air conditioners, washing machines, and dishwashers. They offer energy-efficient operation, precise control, and reduced noise levels, enhancing the performance and user experience of these appliances.
  • HVAC Systems: Brushless AC motors are used in heating, ventilation, and air conditioning (HVAC) systems. They provide efficient and reliable operation for fans, blowers, and pumps, contributing to energy savings and optimal indoor comfort.
  • Smart Home Devices: Brushless AC motors are integrated into smart home devices, including motorized window blinds, smart locks, and automated lighting systems. They offer quiet operation, precise positioning, and energy efficiency, enhancing the convenience and functionality of these devices.
  • Power Tools: Brushless AC motors are increasingly used in power tools such as drills, saws, and sanders. They deliver high power output, longer runtime, and longer tool life compared to brushed motors, making them desirable for DIY enthusiasts and professionals alike.

With their versatility, energy efficiency, and reliability, brushless AC motors have become a preferred choice in both industrial and residential settings. They offer numerous benefits, including improved performance, reduced maintenance requirements, and enhanced energy savings, making them suitable for a wide range of applications across various sectors.

brushless ac motor

How do you troubleshoot common issues with brushless AC motors?

When troubleshooting common issues with brushless AC motors, it’s important to systematically identify and address potential problems. Here’s a detailed explanation of the steps involved in troubleshooting common issues with brushless AC motors:

  1. Check Power Supply: Verify that the power supply to the motor is functioning correctly. Ensure that the voltage and frequency supplied to the motor match the specifications provided by the manufacturer. Check for any loose connections, blown fuses, or tripped circuit breakers that may be interrupting the power supply.
  2. Inspect Wiring and Connections: Examine the motor’s wiring and connections for any signs of damage, loose connections, or poor insulation. Ensure that the wiring is properly sized and connected according to the manufacturer’s guidelines. Tighten any loose connections and repair or replace any damaged wiring or insulation.
  3. Check Motor Temperature: Monitor the motor’s temperature during operation. Excessive heat can indicate issues such as overload, insufficient cooling, or problems with the motor’s ventilation system. Make sure that the motor is adequately cooled and that any cooling fans or ventilation openings are clean and unobstructed.
  4. Inspect Bearings: Check the motor’s bearings for any signs of wear, misalignment, or damage. Excessive noise, vibration, or increased heat can be indications of bearing issues. Lubricate or replace the bearings as necessary, following the manufacturer’s recommendations.
  5. Monitor Motor Performance: Observe the motor’s performance during operation. Look for any abnormal behavior such as erratic speed, excessive noise, or sudden changes in torque. Use appropriate measuring instruments to monitor parameters such as voltage, current, and speed to identify any deviations from expected values.
  6. Check Motor Control System: Evaluate the motor control system, including the motor controller or inverter, for any faults or malfunctions. Inspect the control circuitry, sensors, and feedback mechanisms. Ensure that the control signals and commands are reaching the motor correctly and that the control system is properly programmed and calibrated.
  7. Review Motor Protection Features: Check if the motor’s protection features, such as overcurrent, overvoltage, or thermal protection, are functioning correctly. Review the motor’s documentation or consult the manufacturer’s guidelines to understand the specific protection mechanisms employed and verify their proper operation.
  8. Refer to Manufacturer Documentation: Consult the motor’s documentation, technical manuals, or troubleshooting guides provided by the manufacturer. These resources often contain specific troubleshooting steps and recommendations tailored to the particular motor model. Follow the manufacturer’s guidelines for diagnosing and resolving issues.
  9. Seek Professional Assistance: If the troubleshooting steps outlined above do not resolve the issue or if the problem is beyond your expertise, it is advisable to seek assistance from qualified professionals, such as motor technicians or engineers. They can provide specialized knowledge and diagnostic tools to identify and address complex motor issues.

Remember that troubleshooting procedures may vary depending on the specific motor model, application, and environmental conditions. It’s essential to prioritize safety precautions and adhere to proper electrical and mechanical practices when working with brushless AC motors. When in doubt, consult with experts or refer to the manufacturer’s guidelines for accurate troubleshooting and resolution of issues.

China supplier Gear Motor, AC Gear Motor, 2gn, 6W, 10W, 15W, 20W, 2gn150k, Yn60-10W, 15W, Worm Gearbox, Brushless Motor   vacuum pump diyChina supplier Gear Motor, AC Gear Motor, 2gn, 6W, 10W, 15W, 20W, 2gn150k, Yn60-10W, 15W, Worm Gearbox, Brushless Motor   vacuum pump diy
editor by CX 2024-04-10

China factory High Quality AC DC Brush or Brushless Gear Motor Supplier for Car Conversion Kit vacuum pump adapter

Product Description

42BL Brushless DC Motor
Basic Info
Item Data
Tem Rise 50K max
Working Humidity 65%
Working Temperature (-30ºC~+85ºC)
Insulation Resistance 100MΩ min  250VDC
Surge Test 350VAC for 3s
Insulation Class A
Drive Type Three phase full wave+PWM modulation 

 

Specification
Part Number Rated Voltage Noload Speed Noload Current Rated Torque Load Speed Load Current Power Stall Current Phases
VDC rpm±10% mA±10% mN.m rpm±10% mA±10% W A  
42BLS-01A 45 7900 300 87.5 6000 1600 55 5 3

 

Probond motors designs brush, brushless, stepper, hysteresis and linear motors to meet customers requirements.

Our motors use standard and special components with customer selected torque/speed requirements that can be modified to your applications.

The AC/DC gear motors are based CHINAMFG to distinct magetic circuits that optimize motor design for high speed low torque and low speed high torque.

These motors give you lower rotational losses, excellent thermal transfer, interchangeable end caps, easily sealed. Options include connectors, encoders, shaft modifications, dimensional changes, etc.

Probond motor owns professional sales team and engineer team with more than 10 years experience in motor industry, based on China mainland handling overseas business for years, we know your needs better than others.

Probond Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our hot products on sell in 2017 with highly quality level and competitive price.

Please kindly contact us to get a catalogue.

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 25/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

Can you explain the working principle of a brushless AC motor in simple terms?

A brushless AC motor operates based on the principles of electromagnetism and electronic control. Here’s a simplified explanation of the working principle:

A brushless AC motor consists of two main components: a stator and a rotor. The stator is the stationary part of the motor, while the rotor is the rotating part.

The stator contains multiple coils of wire, known as windings, which are evenly spaced around the inner circumference. These windings are energized with alternating current (AC) from an external power source.

The rotor, on the other hand, consists of permanent magnets or electromagnets. The number of magnets corresponds to the number of windings in the stator.

When the AC power is supplied to the stator windings, it creates a rotating magnetic field. This rotating magnetic field induces a magnetic force on the magnets in the rotor, causing the rotor to rotate.

To ensure the rotor rotates in synchronization with the rotating magnetic field, brushless AC motors employ electronic commutation. Electronic sensors, such as Hall effect sensors, are placed inside the motor to detect the position of the rotor magnets.

Based on the input from the sensors, an electronic controller determines the precise timing to switch the current flow in the stator windings. By switching the current at the right moment, the controller ensures that the magnetic force on the rotor magnets is always in the proper direction to generate continuous rotation.

This process of electronic commutation and precise switching of current in the stator windings allows for accurate control of the motor’s speed, torque, and direction of rotation.

Overall, the working principle of a brushless AC motor involves the creation of a rotating magnetic field in the stator through energized windings, and the use of electronic commutation to accurately control the rotation of the rotor magnets. This combination of electromagnetism and electronic control enables brushless AC motors to provide efficient and precise motor operation in various applications.

brushless ac motor

What types of sensors are typically used in brushless AC motor control systems?

In brushless AC motor control systems, several types of sensors are commonly used to provide feedback and enable precise control over motor operation. These sensors help determine the position, speed, and other parameters of the motor. Here are the typical sensors used in brushless AC motor control systems:

  • Hall Effect Sensors: Hall effect sensors are widely used in brushless AC motor control systems. These sensors detect the position of the rotor magnets by measuring changes in the magnetic field. Hall effect sensors are placed strategically around the motor, typically in the stator, to detect the magnet poles as they pass by. The information from the Hall effect sensors is used by the controller to determine the rotor position and control the timing of current switching in the stator windings.
  • Resolver: A resolver is an electromagnetic sensor that provides rotor position feedback in brushless AC motor control systems. It consists of a rotor and a stator, both containing windings. The rotor winding is excited with an AC voltage, while the stator winding is used to detect the position of the magnetic field. By measuring the phase difference between the rotor and stator windings, the resolver sensor provides accurate angular position information to the controller.
  • Encoder: Encoders are commonly used in brushless AC motor control systems to provide precise position and speed feedback. There are two main types of encoders: optical encoders and magnetic encoders. Optical encoders use a light source and a patterned disc to detect rotational position and speed. Magnetic encoders, on the other hand, utilize magnetic fields and sensors to measure position and speed. Encoders provide high-resolution feedback, enabling precise control over the motor’s operation.
  • Current Sensors: Current sensors are used to measure the current flowing through the stator windings of the brushless AC motor. They provide feedback to the controller, allowing it to monitor and control the current levels accurately. By measuring the current, the controller can adjust the timing and duration of current switching, optimizing the motor’s performance and ensuring efficient operation.
  • Temperature Sensors: Temperature sensors are often integrated into brushless AC motor control systems to monitor the motor’s temperature. They provide feedback to the controller, allowing it to implement thermal protection measures when the motor exceeds safe operating temperatures. Temperature sensors help prevent motor overheating and potential damage, ensuring the motor operates within its safe temperature limits.

These sensors play a crucial role in brushless AC motor control systems by providing the necessary feedback for precise control over the motor’s operation. They enable the controller to determine rotor position, monitor current levels, measure speed, and implement various control strategies to optimize motor performance. The integration of these sensors allows for efficient and reliable operation of brushless AC motors in a wide range of applications.

brushless ac motor

Are there limitations to the size or capacity of brushless AC motors?

Yes, there are limitations to the size or capacity of brushless AC motors. While brushless AC motors offer several advantages over other motor types, such as higher efficiency, better speed control, and longer lifespan, they do have certain limitations that need to be considered. Here’s a detailed explanation of these limitations:

1. Physical Size: Brushless AC motors tend to be larger in size compared to brushed motors of similar power ratings. This is primarily due to the additional components required for the motor’s operation, such as the rotor position sensors and the motor controller. As a result, there may be practical limitations on the size of brushless AC motors that can be used in certain applications where space is limited or where compact motor designs are required.

2. Power Density: Brushless AC motors generally have lower power density compared to some other motor types, such as brushed DC motors or certain types of high-performance motors. Power density refers to the amount of power that can be delivered per unit volume or weight of the motor. This limitation can impact applications where high power-to-size or power-to-weight ratios are critical, such as in aerospace or automotive applications.

3. Cost: Brushless AC motors can be more expensive compared to other motor types, especially for smaller power ratings. The additional components and complex control systems required for brushless AC motor operation contribute to higher manufacturing costs. This cost limitation may make brushless AC motors less economically viable for certain applications, particularly those with low power requirements or strict budget constraints.

4. High-Speed Operation: Brushless AC motors may face challenges when operating at extremely high speeds. The centrifugal forces acting on the rotor components can increase significantly at high speeds, leading to increased mechanical stress and potential issues with rotor balancing. Specialized designs and materials may be required to mitigate these challenges and ensure safe and reliable high-speed operation.

5. Complex Control Systems: Brushless AC motors require sophisticated control systems, such as motor controllers or drives, to operate effectively. These control systems must accurately synchronize the switching of the inverter and the rotor position to achieve optimal motor performance. The design, implementation, and maintenance of these control systems can be complex and may require specialized knowledge and expertise.

Despite these limitations, brushless AC motors are widely used in various applications, ranging from industrial machinery and robotics to electric vehicles and renewable energy systems. Continuous advancements in motor technology and control systems are addressing many of these limitations, allowing brushless AC motors to be applied in a broader range of applications and power capacities.

It’s crucial to consider the specific requirements and constraints of the intended application when selecting a motor type. Consulting with motor experts or engineers can provide valuable insights into the suitability and limitations of brushless AC motors for a given application.

China factory High Quality AC DC Brush or Brushless Gear Motor Supplier for Car Conversion Kit   vacuum pump adapter	China factory High Quality AC DC Brush or Brushless Gear Motor Supplier for Car Conversion Kit   vacuum pump adapter
editor by CX 2023-12-15

China supplier High Torque Round Flange Electric Brushless DC Planetary Gear Outboard Boat Stepper Stepping Motor for Pump/Medical Equipment Controllable wholesaler

Product Description

Product Description

Boat Stepper (Stepping) Motor DESCRIPTION

12ZYJ DC Gear Motor
Basic Info
Item Data
Tem Rise 40K
Working Tem (-20ºC~+80ºC)
Insulation Resistance 100MΩ min  500VDC
Surge Test 500VAC for 1min
Insulation Class E
Weight 15g

Product Parameters

The drawing of 12mm N20 micro metal dc gear motor for robot(stepper motor/stepping motor)

Technical Parameters
PN Rated Voltage Initial Speed Ratio Power Noload Speed Noload Current Rated Speed Rated Current Rated Torque Stall Torque Stall Current
V DC rpm 1:xxx W rpm mA rpm mA Kg.cm Kg.cm mA
12ZYJ-25A 3 7500 298 1 25 50 20 150 0.6 2 500
12ZYJ-150A 6 15000 100 1 150 50 120 150 0.3 1.5 500
12ZYJ-80A 6 20000 250 1 80 60 70 160 0.5 2 600

 stepper motor/stepping motor application
Below are only some typical models, for more specification or a customed motor, pls contact us.

Our Advantages

Our promise to our Customers(stepper motor/stepping motor):
1.  Answer customer’s inquiry within 2 working days.
2.  Reply to our customer questions & Concerns within 3 working days.
3.  Acknowledge Customer purchase orders within 24 hours.

Company Profile

About our company(stepper motor/stepping motor)

Probond motors designs brush, brushless, stepper, hysteresis and linear motors to meet customers requirements. 

Our motors use standard and special components with customer selected torque/speed requirements that can be modified to your applications.

Probond motor owns professional sales team and engineer team with more than 10 years experience in motor industry, based on China mainland handling overseas business for years, we know your needs better than others. 

Probond Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our hot products on sell in 2017 with highly quality level and competitive price. 

Certifications

(stepper motor/stepping motor)certificate

Packaging & Shipping

Terms of Trade (stepper motor/stepping motor)

Terms of price FOB,CIF,CFR,EXW,DDP,etc.
Terms of payment 100% T/T in advance for samples
Bulk quantity payment way can be negotited
Warranty 12 months limited warranty once the items are delivered to the buyer.
Lead time Usually within 2 weeks for trial orders, within 3 weeks for bulk orders.
Package Carton o plywood pallet.
Place of loading ZheJiang , HangZhou, etc.
Shipment carrier Items are usually shipped via Fedex,DHL, TNT,UPS,EMS for trial orders and via vessel for bulk orders.
Delivery time Usually within 5 working days by Express                          
15-30 working days by vessel

 

 

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot
Operating Speed: High Speed
Excitation Mode: Excited
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What factors should be considered when selecting a brushless motor for a specific application?

When selecting a brushless motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here are the key factors to take into account:

1. Power and Torque Requirements:

Determine the power and torque requirements of the application. This includes considering the desired operating speed, acceleration, and load characteristics. Select a brushless motor that can deliver the required power and torque output within the application’s operating range. Consider factors such as the motor’s power rating, torque density, and speed-torque characteristics.

2. Size and Form Factor:

Evaluate the space available for motor installation. Consider the physical dimensions and form factor of the motor to ensure it can fit within the application’s constraints. Additionally, consider the weight of the motor, especially in applications where weight is a critical factor, such as drones or portable devices.

3. Environmental Conditions:

Assess the environmental conditions in which the motor will operate. Consider factors such as temperature extremes, humidity, dust, and vibration levels. Choose a brushless motor that is designed to withstand and perform reliably in the specific environmental conditions of the application. Look for motors with appropriate protection ratings (e.g., IP ratings) and robust construction.

4. Efficiency and Energy Consumption:

Consider the desired energy efficiency of the application. Select a brushless motor with high efficiency to minimize energy consumption and maximize overall system efficiency. Efficiency can be influenced by factors such as motor design, winding configuration, and the use of advanced control techniques. Look for motors with high efficiency ratings or specific certifications, such as IE (International Efficiency) classifications.

5. Control and Feedback Requirements:

Evaluate the control and feedback requirements of the application. Determine if sensorless control or position feedback through sensors (e.g., encoders) is necessary for precise speed or position control. Consider the compatibility of the motor’s control interfaces and communication protocols with the application’s control system. Some applications may require motors with built-in control electronics or compatibility with specific motor controllers.

6. Operating Voltage and Power Supply:

Determine the available power supply and the operating voltage range of the application. Select a brushless motor that operates within the available voltage range and is compatible with the power supply infrastructure. Consider factors such as voltage ratings, current requirements, and the availability of appropriate power supply units or motor drives.

7. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the application. Consider factors such as the motor’s rated lifetime, bearing type, insulation class, and overall build quality. Look for motors from reputable manufacturers with a track record of producing reliable and durable products. Consider the availability of maintenance and support services.

8. Cost and Budget:

Consider the cost and budget limitations of the application. Balance the desired motor performance and features with the available budget. Compare the costs of different motor options, taking into account factors such as initial purchase cost, maintenance requirements, and potential energy savings over the motor’s lifetime.

9. Application-Specific Considerations:

Take into account any application-specific requirements or constraints. This may include factors such as regulatory compliance, specific certifications (e.g., safety or industry-specific certifications), compatibility with other system components, and any unique operational or functional requirements of the application.

By carefully considering these factors, you can select a brushless motor that is well-suited for the specific application, ensuring optimal performance, efficiency, reliability, and compatibility.

brushless motor

How does the absence of brushes impact the maintenance requirements of brushless motors?

The absence of brushes in brushless motors has a significant impact on their maintenance requirements. Here’s how the absence of brushes affects the maintenance of brushless motors:

1. Reduced Wear and Tear:

One of the primary advantages of brushless motors is that they do not have brushes that make physical contact with the commutator. In brushed motors, the brushes wear down over time, leading to brush replacement or repair. The absence of brushes in brushless motors eliminates this wear and tear, resulting in reduced maintenance needs. Brushless motors can operate for longer periods without the need for brush replacement or maintenance related to brush wear.

2. Decreased Risk of Brush Failure:

Brushes in brushed motors are subject to wear, heat, and carbon dust accumulation, which can lead to brush failure or arcing. Brush failure can cause motor performance issues, increased electrical noise, and even motor damage. Brushless motors, on the other hand, do not have brushes that can fail. The absence of brushes reduces the risk of brush-related failures, minimizing the need for maintenance and repair associated with brush replacement or troubleshooting brush-related issues.

3. Improved Reliability and Durability:

The elimination of brushes in brushless motors improves their overall reliability and durability. Without brushes, there is no physical contact or friction that can cause wear, heat generation, or electrical resistance. This results in a more robust motor design with fewer components prone to failure. Brushless motors are known for their long service life and high reliability, requiring minimal maintenance to keep them operational.

4. Simplified Maintenance Procedures:

Brushless motors typically require less maintenance compared to brushed motors. The absence of brushes simplifies maintenance procedures since there is no need to inspect, clean, or replace brushes. Routine maintenance for brushless motors usually involves checking the motor’s connections, ensuring proper cooling, and verifying the integrity of the electronic components and wiring. These maintenance tasks are generally less frequent and less labor-intensive compared to maintaining brushed motors.

5. Potential Cost Savings:

The reduced maintenance requirements of brushless motors can result in cost savings over their lifetime. With fewer maintenance tasks and a longer service life, the overall maintenance and repair costs associated with brushless motors are typically lower compared to brushed motors. The reduced need for brush replacement, brush inspections, and related troubleshooting can contribute to cost savings and improved operational efficiency.

In summary, the absence of brushes in brushless motors significantly impacts their maintenance requirements. The elimination of brushes reduces wear and tear, decreases the risk of brush failure, improves reliability and durability, simplifies maintenance procedures, and can potentially lead to cost savings. These advantages make brushless motors an attractive choice in applications where low maintenance and long service life are essential, such as in electric vehicles, industrial automation, and other systems that require reliable and efficient motion control.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China supplier High Torque Round Flange Electric Brushless DC Planetary Gear Outboard Boat Stepper Stepping Motor for Pump/Medical Equipment Controllable   wholesaler China supplier High Torque Round Flange Electric Brushless DC Planetary Gear Outboard Boat Stepper Stepping Motor for Pump/Medical Equipment Controllable   wholesaler
editor by CX 2023-11-30

China supplier CZPT Custom 36volt 48volt 310volt 1500W Industrial BLDC Planetary Gear Brushless DC Motor 48 V 188 Rpm 72nm with Best Sales

Product Description

Product Description

Feature: 

A. High power range from 75W to 15KW
B. Dia: 57mm-180mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
K.High-performance and stable matching driver and controller

Δ Kindly remind: As different customers may need different motor parameter for fitting your equipment. If below motor can’t fit your need, please kindly send inquiry to us with information for rated power or torque,rated speed, and rated voltage for our new size drawing making for you. CLICK HERE to contact me. Thanks a lot!

Dimensions (Unit: mm )
Mounting screws are included with gear head.

Gearbox Specification:

Gearbox Type

PLF90/PLE90

ZPLF90/ZPLE90

Deceleration stage

1

2

3

1

2

3

Length

153

176.5

199.5

187.5

222

245.5

Reduction ratio

Level 1: 3, 4, 5, 7, 10
Level 2: 16, 20, 25, 28, 35, 40, 70
Level 3: 64, 80, 100, 125, 140, 175, 200, 250

110mm 1500W BLDC motor with PLF90/PLE90 Planetary Gearbox 

Other Motor Specification Form: 
Δ Motor interface, Voltage, Speed can be customized.

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Motor Flange Size

Δ More Motor Flange Size to choose, if you need other size. Welcome to contact us to custom.

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking forward to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 366.3/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China supplier CZPT Custom 36volt 48volt 310volt 1500W Industrial BLDC Planetary Gear Brushless DC Motor 48 V 188 Rpm 72nm   with Best SalesChina supplier CZPT Custom 36volt 48volt 310volt 1500W Industrial BLDC Planetary Gear Brushless DC Motor 48 V 188 Rpm 72nm   with Best Sales
editor by CX 2023-11-09

China supplier High Torque 30W 50W 80W Planetary 12V 24V DC Electric Motor with Reduction Gear with high quality

Product Description

SHINE Motors Product Presentation

1. Features

1) 16 poles with 3 phases external rotor
2) Low torque ripple
3) High inertia torque
4) Compact design
5) Insulation class B
6) Application: Medical, Automation

2. Performance parameters
 

Item Instructions
  1. Winding type
Star 
  1. Hall effect angle
120 degree electrical angle
  1. Resistance Accuracy
±10% @20ºC
  1. Inductance Accuracy
±20% @1kHz
  1. Ambient Temperature
-20ºC~+50ºC
  1. Insulation Resistance
100MΩMin. ,500VDC
  1. Dielectric Strength
500VAC for 1 minute
  1. Shaft Radial Play
0.02Max. (450 g-load)
  1. Shaft Axial Play
0.15Max. (450 g-load)
  1. Insulation class
Class B

3. Mechanical Dimensions

4. Wiring instructions
 

Lead  Color Lead Gauge Function   Instructions
RED UL1430 26AWG Vcc Hall positive:+5V~+24V DC
BLUE HALL A  
GREEN HALL B  
WHITE HALL C  
BLACK GND  HALL negative
YELLOW UL1430 20AWG PHASE U  
RED PHASE V  
BLACK PHASE W  

5. Shnmotor Top Rated Products

6. Package 

1.FedEX / DHL / UPS / TNT for samples,Door to door service;
2.By sea for batch goods;
3.Customs specifying freight forwarders or negotiable shipping methods;
4.Delivery Time:20-25 Days for samples;30-35 Days for batch goods;
5.Payment Terms:T/T,L/C at sight,D/P etc.

7. FAQ

Q1. When can I get the quotation?
We usually quote within 24 hours after we get your inquiry.
If you are urgent to get the price, please send the message on  and  or call us directly.

Q2. How can I get a sample to check your quality?
After price confirmed, you can requiry for samples to check quality.
If you need the samples, we will charge for the sample cost.
But the sample cost can be refundable when your quantity of first order is above the MOQ

Q3. Can you do OEM for us?
Yes, the product packing can be designed as you want.

Q4. How about MOQ?
1 pcs for carton box.

Q5. What is your main market?
Eastern Europe, Southeast Asia, South America.
 
Please feel  free to contact us if you have any question.

 

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

Motor

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China supplier High Torque 30W 50W 80W Planetary 12V 24V DC Electric Motor with Reduction Gear   with high qualityChina supplier High Torque 30W 50W 80W Planetary 12V 24V DC Electric Motor with Reduction Gear   with high quality
editor by CX 2023-05-17

China supplier China Manufacturer High Quality 12V 24 Volt Micro BLDC Motors / Brushless Planetary Gear Motors with Best Sales

Product Description

China Manufacturer High Quality 12V 24 volt micro bldc motors / brushless planetary gear motors

Specification

Voltage: 12V- 310V
Power:  15W-400W
Rated Speed: 2000-3000RPM
Output Speed: Customized
Torque: Customized
Diameter of gearbox: 60-104cm
 

Detailed Pictures


 

Greensky Mechanical Products include:

1. AC (gear) motor
2. DC & BLDC (gear) motor
3. Worm gearbox
4. Helical gearbox
5. Coreless motor
6. External rotor motor
7. Motor controller
8. Customized motor

If you have projects that need motors and gear boxes, please freely contact me.

Company Overview

  

About Greensky Mechanical

  • History: Greensky Mechanical is a motor brand of Greensky power company Limited. The brand Greensky Mechanical was founded in 2012 with investing in a 15 year old motor factory in ZHangZhoug Province. Greensky Power brought new management concept to the new joint company and increase the quality of the motors as Greensky Power always provides stable and good quality and service to the society. The Positioning of the brand is medium & high quality level. Our customers are mainly in Europe. We save cost by increasing the efficiency of production and delivery. 
  • Market: Greensky has customers in 30 different countries. Germany, Austria, Japan, USA and Middle-East are our main market .
  • Mission:  “Once and forever” is our goal to serve customers in the world. Once we do business with customer, we will do business forever.

The advantages of working with us are:

1.  Convenience. We can provide all types of motor & gearbox by manufacturing and out sourcing.
2.  High Quality. All products are <1% defect rate with ≥ 1 year guarantee.
3.  Low Cost. We seriously reduce cost on material, processing, assembling, packing and delivery.
4.  Flexible service. MOQ below 10pcs & customize available & urgent order solution.
5.  Fast response. Our principle is response in 15 minutes and provide solution in 24 hours.

We hope you enjoy cooperating with us.
 

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 4
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China supplier China Manufacturer High Quality 12V 24 Volt Micro BLDC Motors / Brushless Planetary Gear Motors   with Best SalesChina supplier China Manufacturer High Quality 12V 24 Volt Micro BLDC Motors / Brushless Planetary Gear Motors   with Best Sales
editor by CX 2023-05-09