Tag Archives: vacuum pump supplier

China supplier High Efficiency Electric Ec Brushless Motor for Refrigeration/Air Conditioning vacuum pump booster

Product Description

Product Description

EC MOTOR for Refrigeration is a high-performance electronically commutated motor, specifically designed for refrigeration and air conditioning systems. lt provides superior efficiency, precise control, and long-lasting reliability for demanding applications.

– Large power range:3-30W
– Large size and angle range of fan blades can be used
– Low noise, low vibration
– Low energy consumption and high efficiency

Features:

1) High Efficiency: 
The EC MOTOR for Refrigeration has a brushless DC design that provides up to 70% efficiency, which is significantly higher than traditional AC motors.The motor’s integrated electronic control system continually monitors operating conditions and adjusts the motor’s speed, resulting in reduced energy consumption, lower operating costs, and longer service life.

2) Precise Control: 
The motor has a smooth, continuous speed control that enables precise temperature and humidity regulation. The EC MOTOR for Refrigeration can operate at variable speeds to match system demand, making it an ideal choice forenergy-efficient systems.

3) Reduced Noise and Vibration: 
The brushless DC design and electronic control systerresult in less noise and vibration compared to traditional AC motors. This makes it anexcellent choice for quiet environments

4) Compact Design: 
The compact design of the EC MOTOR for Refrigeration provides a high power-to-size ratio, which makes it an ideal choice for space-constrained applications.

Specifications:

1) Voltage: 
The motor operates on a range of voltages, from 100V to 240V.

2) Speed: 
The motor’s speed can be controlled between 300RPM to 1800RPM depending on the application.

3) Control: 
The motor features an integrated electronic control system that provides precise speed control and system monitoring.

4) Operating Temperature:
The motor can operate in a temperature range from -40°C to +50°C

Overall, the EC MOTOR for Refrigeration is a highly efficient, reliable. and precise motor designed to meet the demands of refrigeration and air conditioning applications. lts superior performance makes it an ideal choice for OEMs and system integrators looking to improve system efficiency and reliability.

As long as you are a manufacturer of super-market refrigeration equipements, or beverage cabinets, or beer coolers etc, you will be in need of our EC Brushless Motor for Fan.
 

Product Parameters

MDAC6115A EC Brushless Motor Parameters:

MODEL Voltage
V
Maximum load SPEED
RPM
Minimum noise dB(A) Minimum vibration mm/s Maximum power 
W
Maximum efficiency
%
MDAC6115A 100-240V 300 28° 300-1800 39.5 1.2 30 70

LOAD/SPEED 200mm blade 230mm blade 254mm blade
28° 34° 28° 34° 28° 34°
1300RPM V V V V V V
1500RPM V V V V V V
1800RPM V V V X X X

Technical Parameter
Nominal voltage range 220-240VAC,100-240VAC,50/60Hz
Rotation speed range 300-  1800  rpm
Material PBT
Airflow direction Air exhaust or airintake (depending on impeller)
Direction of rotation CCW(view on drive end)
Degree of protection IP65
Insulation class “B”   VD,    “F” UL
Installation position Any
Mode of operation Continuous operation (S1)
Bearings Maintenance-free ball bearing system
Motor protection By electronics
Electrical hook-up Power cables
Protection class II(without grounding conductor)
Approvals CCC;   EAC;VDE,EN   6571-2-24,EN   6571-2-89,EN   6571-1
Fitting of attachments Guard grille and wall ring are attached to
the projecting thread ends on the
Mounting of axial impeller A plastic adapter with
catching peg and M4 screw is used to secure the impeller on the motor shaft
Ambient temperature -40ºC-50ºC

We continuously improve and pursue products that are more energy-efficient, stable, popular, and environmentally friendly. Compared to traditional covered pole motor products, EC has obvious advantages in high-efficiency and energy-saving electrodes, specifically:

Comparison details of MDAC6115A and 25W shaded pole motors:

1) Energy Saving 
It’s power consumption is around 1/3 of Shade-pole motor to meet the same function.

Such a siginificant energy saving is what your customers always wanted, considering the huge power consumption where your equiment is used for.
It’s also meeting high energy standard of North American and European market.

2) Job Saving
We have 2 models of EC Motor that are enough to cover almost all 7 models of Shade-pole motor for different refrigeration equipements, because EC Motor is designed to be speed adjustable.

– Adjustable speed saves your job of model selection for both purchaing team and technical team.
– Long life saves your job of after-sales.
– Energy sameing saves your job of explaining to your buyers.
– Wide voltage range saves your marketing policy to different markets.

Below listed the comparasion between our EC Motor and regular Shade-pole Motor:

  EC Motor 6115A Shade-Plole Motor 25W
Input Power 30W 100W
Out Power 20W 25W
Voltage 100-240V 110V or 220V
Height of The Motor 80mm +/-1 113mm +/-1
Noise 39.5dBA 60dBA
Motor Life 8~10years 3~5years
Bearing Ball bearing Sleeve bearing
Efficient up to 70% Max 18%
Speed 300~1800rpm 1300rpm
Certificate UL, VDE, CE, CCC, EX, RoHs UL, VDE, CE, CCC, EX, RoHs
Protect Level IP65 IP42

→Click to View More EC Motors Products!!!

Company Profile

We have our own design, research and development, testing equipment, and production line. The cost-effectiveness and after-sales service of our products are guaranteed, and we can provide technical support and customized services!

Exhibition

Certifications

With abundant technique force,we have our own researching, developing, manufacturing, inspecting and testingcenters, and imported the international advanced high-tech equipments. Our company has passed the ISO9001,ISO14001,OHS18001 international management system certificates. The products have got UL,ETL,CE,CB,and CCC certificates. Our products are not only selling strongly in more than 30 provincesand municipality,but also largely exporting to Europe,America,Australia,Middle East, Africa and South Asia. We have won an excellent reputation from the customers and friends by our product quality,price versus performance ratio and service.

FAQ

Q1: Are you a manufacturer or trader?
A1: ZHangZhoug Maidi Refrigeration Technology Co., Ltd. is a Hi-tech enterprise. We own the standard plant and office building which covering 21, 000 square meters. With abundant technique force, we have our own researching, developing, manufacturing, inspecting and testing centers, and imported the international advanced equipments.

Q2: How to replace refrigerator ec motor?
A2: We have a professional team of engineers who provide technical support and online guidance on product installation and replacement.

Q3: How do you ensure quality?
A3: We have a dedicated product research and testing center with authoritative quality management system certification: ISO9001/ISO14001/OHS18001.

Q4: How much does a refrigeration part cost?
A4: Factory price for you, not cheapest but the lowest at the same quality.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Refrigerators/Beverage Cabinets/Ice Maker, etc.
Speed: Variable Speed
Number of Stator: Three-Phase
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

How do brushless motors compare to brushed motors in terms of lifespan and reliability?

When comparing brushless motors to brushed motors, there are notable differences in terms of lifespan and reliability. Here’s a detailed explanation of how brushless motors compare to brushed motors in these aspects:

1. Lifespan:

Brushed motors typically have a shorter lifespan compared to brushless motors. This is primarily due to the mechanical wear and tear associated with brushed motors. In brushed motors, the brushes and commutator make physical contact, causing friction, heat generation, and eventual wear. Over time, the brushes wear down and the commutator may become worn or damaged, leading to degraded motor performance and eventual failure. On the other hand, brushless motors do not have brushes or commutators, eliminating the mechanical wear components. As a result, brushless motors generally have a longer lifespan and can operate for thousands of hours with minimal maintenance.

2. Reliability:

Brushless motors are generally considered more reliable than brushed motors. The absence of brushes and commutators in brushless motors reduces the risk of failure due to mechanical wear and associated issues like brush sparking and arcing. The elimination of these moving parts also leads to reduced friction, less heat generation, and lower chances of electrical or mechanical failures. Additionally, brushless motors often benefit from advanced control systems that can monitor and protect against various operating conditions, enhancing their overall reliability.

3. Operating Conditions:

Brushless motors are better suited for demanding operating conditions compared to brushed motors. The absence of brushes and commutators in brushless motors means there are no physical contacts that can generate sparks or cause electrical arcing. This makes brushless motors more suitable for applications where sparks or electrical noise can be problematic, such as in explosive or sensitive electronic environments. Furthermore, brushless motors can operate at higher speeds and handle higher torque loads than brushed motors, making them more versatile in a wide range of applications.

4. Maintenance:

Brushless motors generally require less maintenance compared to brushed motors. Brushed motors often require periodic maintenance to replace worn-out brushes and address commutator issues. Additionally, the presence of brushes can lead to carbon dust buildup, requiring regular cleaning and maintenance. In contrast, brushless motors have no brushes or commutators to replace or clean, significantly reducing the maintenance requirements. However, it’s important to note that brushless motors may still require periodic inspections, especially for cooling systems or bearings, to ensure optimal performance and reliability.

5. Efficiency:

Brushless motors are typically more efficient than brushed motors. The absence of brushes and commutators in brushless motors reduces energy losses associated with friction and electrical resistance. This improved efficiency results in several benefits, such as reduced power consumption, longer battery life (in battery-powered applications), and less heat generation. Brushless motors are known for their high power-to-weight ratio and can deliver higher torque output per unit of input power compared to brushed motors.

In summary, brushless motors generally offer a longer lifespan and higher reliability compared to brushed motors. The absence of brushes and commutators reduces mechanical wear and associated failures, making brushless motors more durable. They are better suited for demanding operating conditions, require less maintenance, and offer improved efficiency. These factors have made brushless motors increasingly popular in various applications, including robotics, electric vehicles, industrial automation, and aerospace, where reliability and longevity are essential.

brushless motor

How does the absence of brushes impact the maintenance requirements of brushless motors?

The absence of brushes in brushless motors has a significant impact on their maintenance requirements. Here’s how the absence of brushes affects the maintenance of brushless motors:

1. Reduced Wear and Tear:

One of the primary advantages of brushless motors is that they do not have brushes that make physical contact with the commutator. In brushed motors, the brushes wear down over time, leading to brush replacement or repair. The absence of brushes in brushless motors eliminates this wear and tear, resulting in reduced maintenance needs. Brushless motors can operate for longer periods without the need for brush replacement or maintenance related to brush wear.

2. Decreased Risk of Brush Failure:

Brushes in brushed motors are subject to wear, heat, and carbon dust accumulation, which can lead to brush failure or arcing. Brush failure can cause motor performance issues, increased electrical noise, and even motor damage. Brushless motors, on the other hand, do not have brushes that can fail. The absence of brushes reduces the risk of brush-related failures, minimizing the need for maintenance and repair associated with brush replacement or troubleshooting brush-related issues.

3. Improved Reliability and Durability:

The elimination of brushes in brushless motors improves their overall reliability and durability. Without brushes, there is no physical contact or friction that can cause wear, heat generation, or electrical resistance. This results in a more robust motor design with fewer components prone to failure. Brushless motors are known for their long service life and high reliability, requiring minimal maintenance to keep them operational.

4. Simplified Maintenance Procedures:

Brushless motors typically require less maintenance compared to brushed motors. The absence of brushes simplifies maintenance procedures since there is no need to inspect, clean, or replace brushes. Routine maintenance for brushless motors usually involves checking the motor’s connections, ensuring proper cooling, and verifying the integrity of the electronic components and wiring. These maintenance tasks are generally less frequent and less labor-intensive compared to maintaining brushed motors.

5. Potential Cost Savings:

The reduced maintenance requirements of brushless motors can result in cost savings over their lifetime. With fewer maintenance tasks and a longer service life, the overall maintenance and repair costs associated with brushless motors are typically lower compared to brushed motors. The reduced need for brush replacement, brush inspections, and related troubleshooting can contribute to cost savings and improved operational efficiency.

In summary, the absence of brushes in brushless motors significantly impacts their maintenance requirements. The elimination of brushes reduces wear and tear, decreases the risk of brush failure, improves reliability and durability, simplifies maintenance procedures, and can potentially lead to cost savings. These advantages make brushless motors an attractive choice in applications where low maintenance and long service life are essential, such as in electric vehicles, industrial automation, and other systems that require reliable and efficient motion control.

brushless motor

What is a brushless motor, and how does it differ from traditional brushed motors?

A brushless motor is an electric motor that operates without the use of brushes and a commutator, unlike traditional brushed motors. Brushless motors rely on electronic commutation to control the power distribution to the motor’s windings, resulting in improved efficiency, reliability, and performance. Here are the key differences between brushless motors and traditional brushed motors:

1. Construction:

Brushed motors consist of a rotor (armature) and a stator. The rotor contains permanent magnets, and the stator consists of electromagnets. Brushes and a commutator are used to transfer power to the rotor and control the direction of current flow. In contrast, brushless motors have a stationary stator with windings and a rotor that contains permanent magnets. The power is supplied to the stator windings through an external controller that electronically commutates the motor.

2. Commutation:

In brushed motors, commutation is achieved mechanically through the brushes and commutator. The brushes make physical contact with the commutator, which switches the direction of current flow in the rotor windings as the motor rotates. This mechanical commutation causes friction, wear, and electrical arcing, leading to inefficiencies and limited lifespan. Brushless motors, on the other hand, employ electronic commutation. Sensors or Hall effect devices detect the rotor position, and the external controller determines the appropriate timing and sequence of current flow in the stator windings, eliminating the need for brushes and commutation mechanisms.

3. Efficiency:

Brushless motors are generally more efficient than brushed motors. The absence of brushes and commutator reduces friction and electrical losses, resulting in higher efficiency and improved power conversion. Brushed motors experience energy losses due to brush contact resistance and electrical arcing, which can reduce overall efficiency. Brushless motors can achieve efficiency levels of over 90%, while brushed motors typically have efficiencies ranging from 75% to 85%.

4. Maintenance:

Brushless motors require less maintenance compared to brushed motors. The brushes in brushed motors wear over time and need periodic replacement. Additionally, the commutator may require cleaning or resurfacing. In contrast, brushless motors have no brushes or commutator, eliminating the need for brush replacement and commutator maintenance. This makes brushless motors more reliable and reduces downtime and maintenance costs.

5. Lifespan:

The lifespan of brushless motors is generally longer than that of brushed motors. The absence of brushes and commutator reduces wear and electrical arcing, which are common causes of failure in brushed motors. Brushless motors can operate for thousands of hours without requiring major maintenance, while brushed motors typically have a shorter lifespan due to brush and commutator wear.

6. Control and Performance:

Brushless motors offer more precise control and better performance compared to brushed motors. The electronic commutation in brushless motors allows for finer control of the motor’s speed, torque, and direction. The external controller can adjust the motor’s parameters dynamically, enabling smoother operation and better responsiveness. Brushless motors also have higher torque-to-weight ratios, faster acceleration, and lower inertia, making them suitable for applications requiring high-performance and precise motion control.

These differences make brushless motors advantageous in many applications where efficiency, reliability, and precise control are crucial. They are commonly used in industries such as robotics, aerospace, electric vehicles, and industrial automation, where high-performance and long-lasting motors are required.

China supplier High Efficiency Electric Ec Brushless Motor for Refrigeration/Air Conditioning   vacuum pump booster	China supplier High Efficiency Electric Ec Brushless Motor for Refrigeration/Air Conditioning   vacuum pump booster
editor by CX 2024-05-16

China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W vacuum pump connector

Product Description

 

Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

Planetary Gearbox Parameters:

56JXE300K
Ring material Metal
Bearing at output Ball bearings
Max. Radial (12mm from flange) 300N
Max. shaft axial load 200N
Radial play of shaft (near to flange) ≤0.08mm
Axial play of shaft ≤0.4mm
Backlash at no-load ≤2.5°
Shaft press fit force, max 300N

 

Motor Shaft Pinion Specifications
Module 1
No. of teeth 12 15 9
Pressure angle 20°
Hole diameter Φ6H7
Reduction ratio 1/4.25  1/15  1/18  1/23  1/52  1/61  1/72  1/96  1/121  1/220  1/260  1/307 1/3.6  1/13  1/43  1/154  1/187 1/5.33  1/28

 

Gearbox Specifications:
Reduction ratio Exact reduction ratio Rated tolerance torque Max momentary tolerance torque Efficiency L (mm) Weight (g)
1/3.6  1/4.25  1/5.33 1/3.6  1/4.25  1/5.33 3 N.m Max 9 N.m 90% 37.8±0.5 489
1/13  1/15  1/18  1/23  1/28 1/12.96  1/15.30  1/18.06  1/22.67  1/28.44 12 N.m Max 36 N.m 0.81 49.5±0.5 681
1/43  1/52  1/61  1/72  1/96  1/121 1/42.69  1/51.84  1/61.20  1/72.25  1/96.33  1/120.89 24 N.m Max 72 N.m 73% 60.8±0.5 871
1/154  1/187  1/220  1/260  1/307 1/153.69  1/186.62  1/220.32  1/260.10  1/307.06 30 N.m Max 90 N.m 0.66 71.9±0.5 1066
Input & output same rotation direction; Motor Max. input speed: <6000rpm; Operating temperature range: -15ºC ~ +80ºC

We support many different Gearbox to customize, such as Planetary Gearbox, High Precision Planetary Gearbox, Worm gearbox, Eccentric Gearbox and so on. If you have any customized requirements, contact us immediately!!!

 

Planetary Gearbox Type:

 

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

 

Detailed Photos

                                       Cnc Motor Kits                                                                                                   Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

1. who are we?

We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.

2. how can we guarantee quality?

We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.

3.what can you buy from us?

Always a pre-production sample before mass production;
Always final Inspection before shipment;

4. why should you buy from us not from other suppliers?

Professional one-to-1 motor customized . The world’s large enterprise of choice for high quality suppliers . ISO9001:2008 quality management system certification, through the CE, ROHS certification.

5. what services can we provide?

Accepted Delivery Terms: FOB,CFR,CIF,EXW,CIP,FCA,CPT,DDP,DDU,Express Delivery,DAF,DES;
Accepted Payment Currency:USD,EUR,CAD,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Cash,Escrow;
Language Spoken:English,Chinese

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Compound
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What factors should be considered when selecting a brushless motor for a specific application?

When selecting a brushless motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here are the key factors to take into account:

1. Power and Torque Requirements:

Determine the power and torque requirements of the application. This includes considering the desired operating speed, acceleration, and load characteristics. Select a brushless motor that can deliver the required power and torque output within the application’s operating range. Consider factors such as the motor’s power rating, torque density, and speed-torque characteristics.

2. Size and Form Factor:

Evaluate the space available for motor installation. Consider the physical dimensions and form factor of the motor to ensure it can fit within the application’s constraints. Additionally, consider the weight of the motor, especially in applications where weight is a critical factor, such as drones or portable devices.

3. Environmental Conditions:

Assess the environmental conditions in which the motor will operate. Consider factors such as temperature extremes, humidity, dust, and vibration levels. Choose a brushless motor that is designed to withstand and perform reliably in the specific environmental conditions of the application. Look for motors with appropriate protection ratings (e.g., IP ratings) and robust construction.

4. Efficiency and Energy Consumption:

Consider the desired energy efficiency of the application. Select a brushless motor with high efficiency to minimize energy consumption and maximize overall system efficiency. Efficiency can be influenced by factors such as motor design, winding configuration, and the use of advanced control techniques. Look for motors with high efficiency ratings or specific certifications, such as IE (International Efficiency) classifications.

5. Control and Feedback Requirements:

Evaluate the control and feedback requirements of the application. Determine if sensorless control or position feedback through sensors (e.g., encoders) is necessary for precise speed or position control. Consider the compatibility of the motor’s control interfaces and communication protocols with the application’s control system. Some applications may require motors with built-in control electronics or compatibility with specific motor controllers.

6. Operating Voltage and Power Supply:

Determine the available power supply and the operating voltage range of the application. Select a brushless motor that operates within the available voltage range and is compatible with the power supply infrastructure. Consider factors such as voltage ratings, current requirements, and the availability of appropriate power supply units or motor drives.

7. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the application. Consider factors such as the motor’s rated lifetime, bearing type, insulation class, and overall build quality. Look for motors from reputable manufacturers with a track record of producing reliable and durable products. Consider the availability of maintenance and support services.

8. Cost and Budget:

Consider the cost and budget limitations of the application. Balance the desired motor performance and features with the available budget. Compare the costs of different motor options, taking into account factors such as initial purchase cost, maintenance requirements, and potential energy savings over the motor’s lifetime.

9. Application-Specific Considerations:

Take into account any application-specific requirements or constraints. This may include factors such as regulatory compliance, specific certifications (e.g., safety or industry-specific certifications), compatibility with other system components, and any unique operational or functional requirements of the application.

By carefully considering these factors, you can select a brushless motor that is well-suited for the specific application, ensuring optimal performance, efficiency, reliability, and compatibility.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

In which industries are brushless motors commonly employed, and what are their key roles?

Brushless motors find applications in a wide range of industries, thanks to their numerous advantages and capabilities. Here are some of the industries where brushless motors are commonly employed and their key roles:

1. Automotive Industry:

In the automotive industry, brushless motors are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They play a crucial role in providing propulsion for these vehicles, driving the wheels and ensuring efficient power delivery. Brushless motors offer high efficiency, precise control, and fast acceleration, making them ideal for electric drivetrains. Additionally, they are employed in various automotive subsystems such as electric power steering, HVAC systems, cooling fans, and braking systems.

2. Aerospace and Aviation:

Brushless motors have significant applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations. Their high power-to-weight ratio, compact size, and high-speed capabilities make them well-suited for aerospace requirements.

3. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They power robotic arms, joints, and grippers, enabling accurate and controlled movements. Brushless motors offer high torque, precise position control, and rapid acceleration, making them vital for industrial robotics, collaborative robots (cobots), and automated manufacturing processes. Their compact size and efficiency also contribute to the design and performance of robotic systems.

4. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes. Their ability to handle high loads, operate at high speeds, and offer precise control makes them valuable in demanding industrial environments.

5. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of the industries where brushless motors are commonly employed. Their efficiency, reliability, precise control, compact size, and high-performance characteristics make them versatile and valuable in many other sectors as well. As technology continues to advance, brushless motors are likely to find new applications and play increasingly important roles in various industries.

China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W   vacuum pump connector	China supplier Customized NEMA 23 BLDC DC Gear Geared Motor 24 48VDC Planetary Reduction Gearbox Integrated Driver Brushless DC Motor Power 10W Upto 800W   vacuum pump connector
editor by CX 2024-05-14

China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W vacuum pump and compressor

Product Description

Brushed or Brushless DC Motors, Customized Specifications, OEM/ODM

Option for :
Customized shaft, performance, voltage, mounting, lead wires..

Option for :
Electric Brake, Planetary Gearbox, Worm Gearbox, Encoder, Controller Integrated

1. BRUSHED DC MOTOR :

Voltage 12v, 24v, 36v, 48v, upto 310vdc

power 5w  to 1000w

speed 1pm upto 10000rpm 

Dia. 30mm, 32mm, 36mm, 38mm, 42mm, 52mm, 54mm, 63mm, 70mm, 76mm, 80mm, 90mm, 110mm

Belows are some typical models,

2. BRUSHLESS DC MOTOR :
 

Voltage 12v, 24v, 36v, 48v, upto 380vdc

power 5w  to 2000w

speed 1pm upto 15000rpm 

Size 28mm, 30mm, 36mm, 42mm, 57mm, 60mm, 63mm, 70mm, 80mm, 86mm, 110mm

Bearing High quality ball bearing
Poles  4- poles 8-poles 12-poles
Protection class IP40 IP55 option
Insulation class class: F

Belows are some typical models,

Below are only some typical models for reference.

63ZYT Series Permanent magnet Brushed Dc Motors

57HBL Series Brushless Dc Motors

56JXE300K. 63ZYT Series Dc Planetary Gear Motor

56JXE300K. 57HBL Series Brushless Dc Planetary Gear Motor

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Machine, Robot
Operating Speed: Constant Speed
Excitation Mode: Pm
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

Are there different configurations of brushless motors, and how do they differ?

Yes, there are different configurations of brushless motors, each designed to meet specific application requirements and operating conditions. These configurations differ in terms of the arrangement of the motor components, such as the rotor, stator, and magnet configuration. Here’s a detailed explanation of the various configurations of brushless motors and how they differ:

  • Outrunner Configuration: In an outrunner configuration, the rotor is located on the outside of the stator. The rotor consists of a ring-shaped permanent magnet assembly with multiple magnetic poles, while the stator contains the motor windings. The outrunner configuration offers several advantages, including high torque output, robust construction, and efficient heat dissipation. Outrunner motors are commonly used in applications that require high torque and moderate speed, such as electric vehicles, robotics, and aircraft propulsion systems.
  • Inrunner Configuration: In an inrunner configuration, the rotor is located on the inside of the stator. The rotor typically consists of a solid cylindrical core with embedded permanent magnets, while the stator contains the motor windings. Inrunner motors are known for their compact size, high speed capabilities, and precise speed control. They are commonly used in applications that require high-speed rotation and compact form factors, such as drones, small appliances, and industrial automation equipment.
  • Internal Rotor Configuration: The internal rotor configuration, also known as an internal rotor motor (IRM), features a rotor located inside the stator. The rotor consists of a laminated core with embedded magnets, while the stator contains the motor windings. Internal rotor motors offer high power density, efficient heat dissipation, and excellent dynamic response. They are commonly used in applications that require high-performance and compact size, such as electric vehicles, industrial machinery, and robotics.
  • External Rotor Configuration: The external rotor configuration, also known as an external rotor motor (ERM), features a rotor located on the outside of the stator. The rotor consists of a magnet assembly with multiple magnetic poles, while the stator contains the motor windings. External rotor motors offer high torque density, compact size, and high starting torque capabilities. They are commonly used in applications that require high torque and compact design, such as cooling fans, HVAC systems, and small electric appliances.
  • Radial Flux Configuration: In a radial flux configuration, the magnetic flux flows radially from the center to the periphery of the motor. This configuration typically consists of a disc-shaped rotor with magnets on the periphery and a stator with motor windings arranged in a radial pattern. Radial flux motors offer high torque density, efficient heat dissipation, and good power output. They are commonly used in applications that require high torque and compact size, such as electric bicycles, electric scooters, and power tools.
  • Axial Flux Configuration: In an axial flux configuration, the magnetic flux flows axially along the length of the motor. This configuration typically consists of a pancake-shaped rotor with magnets on both faces and a stator with motor windings arranged in an axial pattern. Axial flux motors offer high power density, efficient cooling, and compact design. They are commonly used in applications that require high power output and limited axial space, such as electric vehicles, wind turbines, and aerospace systems.

In summary, different configurations of brushless motors include outrunner, inrunner, internal rotor, external rotor, radial flux, and axial flux configurations. These configurations differ in terms of the arrangement of motor components, such as the rotor and stator, and offer unique characteristics suited for specific applications. Understanding the differences between these configurations is essential for selecting the most suitable brushless motor for a given application.

brushless motor

What are the key components of a brushless motor, and how do they function together?

A brushless motor consists of several key components that work together to generate motion. Here are the key components of a brushless motor and their functions:

1. Stator:

The stator is the stationary part of the brushless motor. It consists of a core, typically made of laminated iron, and multiple coils or windings. The windings are evenly spaced around the inner circumference of the motor housing. The stator’s function is to generate a rotating magnetic field when electric current passes through the windings.

2. Rotor:

The rotor is the rotating part of the brushless motor. It typically consists of permanent magnets, which are magnetized in a specific pattern. The rotor’s function is to interact with the stator’s magnetic field and convert the electromagnetic energy into mechanical rotation.

3. Hall Effect Sensors:

Hall effect sensors are used to detect the position of the rotor magnets. These sensors are typically mounted on the stator, facing the rotor. They provide feedback to the motor controller about the rotor’s position, allowing the controller to determine the timing and sequence of current flow in the stator windings.

4. Motor Controller:

The motor controller is an electronic device that controls the operation of the brushless motor. It receives signals from the Hall effect sensors and processes them to determine the appropriate timing and sequence of current flow in the stator windings. The motor controller sends electrical pulses to the stator windings to generate the rotating magnetic field and control the motor’s speed and torque.

5. Power Supply:

The power supply provides the electrical energy needed to drive the brushless motor. It can be a battery, DC power source, or an AC power source with an inverter. The power supply feeds the motor controller, which converts the input power into the appropriate signals to drive the stator windings.

6. Commutation Electronics:

Commutation electronics are responsible for switching the currents in the stator windings at the right time and in the right sequence. The commutation electronics, typically integrated into the motor controller, ensure that the appropriate stator windings are energized as the rotor rotates, creating a rotating magnetic field that interacts with the rotor magnets.

7. Bearings:

Bearings are used to support the rotor and allow it to rotate smoothly. They reduce friction and enable efficient transfer of mechanical power. Bearings in brushless motors are typically ball bearings or sleeve bearings, depending on the motor design and application requirements.

These key components of a brushless motor work together to generate motion. The motor controller receives feedback from the Hall effect sensors to determine the rotor position. Based on this information, the controller sends electrical pulses to the stator windings, creating a rotating magnetic field. The interaction between the rotating magnetic field and the permanent magnets on the rotor causes the rotor to rotate. The motor controller continuously adjusts the timing and amplitude of the currents flowing through the stator windings to maintain the rotation and control the motor’s speed and torque.

By integrating these components and utilizing electronic commutation, brushless motors offer advantages such as high efficiency, precise control, low maintenance, and improved performance compared to brushed motors. They find applications in various industries where efficient and reliable motion control is required.

China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W   vacuum pump and compressor	China supplier Customizable Electric Brushed Brushless DC Motor 12V 18V 24V 36V 48V 310V PMDC/BLDC Planetary/Worm Gear Motor 12 24 36 48 Volt 15W 50W 100W 200W 300W 500W 800W   vacuum pump and compressor
editor by CX 2024-05-09

China supplier 180st-M40015 6000W 22A Brushless AC Motor vacuum pump oil

Product Description

Brushless Servo Motor Series 180ST-M
Model 180ST-M 180ST-M 180ST-M 180ST-M 180ST-M 180ST-M 180ST-M 180ST-M
Specification Unit 10015 20015 30015 40015 1571 2571 3571 4571
Rated voltage U V 220VAC -15%-+10% 50/60Hz (300VDC)
Rated output power P out W 1500 3000 4500 6000 2000 4000 5500 7500
Rated speed n N rpm 1500 1500 1500 1500 2000 2000 2000 2000
Rated current I N A 5.5 11 16.5 22 7.5 15 22 29
Rated torque T N N.m 10 20 30 40 10 20 26.3 35.8
Peak current I P A 11 22 33 44 15 30 44 58
Peak torque T p N.m 20 40 60 80 20 40 52.6 71.6
Rotor inertia J Kg.cm 2 40 80 120 160 40 80 120 160
Encoder CPR 2500 2500 2500 2500 2500 2500 2500 2500
IP Code IP65 IP65 IP65 IP65 IP65 IP65 IP65 IP65
Winding class Class F  Continuous
Motor weight Kg 12 18 24 30 12 18 24 30
Remark Motor are available with different winding and mechanical modification to meet specific applications.

Lead-wires’ Spec To Encoder
Color BLU BLU GRN GRN YLW YLW BRN BRN GRY GRY WHT WHT RED BLK Shield
/BLK /BLK /BLK /BLK /BLK /BLK
Description A+ A- B+ B- Z+ Z- U+ U- V+ V- W+ W- Vcc GND Shield
Plug Pin# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To Motor
Color RED YLW BLU YLW/GRN
Description U V W GND
Plug Pin# 1 2 3 4

FAQ
Q: How to order?
A: send us inquiry → receive our quotation → negotiate details → confirm the sample → sign contract/deposit → mass production → cargo ready → balance/delivery → further cooperation.

Q: How about Sample order?
A: Sample is available for you. please contact us for details. 

Q: Which shipping way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Post,Sea are available.The other shipping ways are also available, please contact us if you need ship by the other shipping way. 

Q: How long is the deliver?
A: Devliver time depends on the quantity you order. usually it takes 15-25 working days.

Q: My package has missing products. What can I do?
A: Please contact our support team and we will confirm your order with the package contents.We apologize for any inconveniences. 

Q: How to confirm the payment?
A: We accept payment by T/T, PayPal, the other payment ways also could be accepted,Please contact us before you pay by the other payment ways. Also 30-50% deposit is available, the balance money should be paid before shipping. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Function: Driving
Casing Protection: Closed Type
Certification: ISO9001, CCC, SGS
Brand: Sunrise Motor
Samples:
US$ 115/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

In what applications are brushless AC motors commonly used?

Brushless AC motors find extensive application in various industries and sectors due to their numerous advantages. Here are some common applications where brushless AC motors are commonly used:

  • Industrial Automation: Brushless AC motors are widely employed in industrial automation systems, including conveyor belts, robotic arms, packaging machinery, and CNC machines. Their precise control, high efficiency, and reliability make them suitable for these demanding applications.
  • Electric Vehicles (EVs): Brushless AC motors are a popular choice for electric vehicles, including electric cars, motorcycles, and scooters. They offer high torque, efficient power conversion, and regenerative braking capabilities, contributing to the overall performance and range of electric vehicles.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often use brushless AC motors in fans and blowers. The motors provide energy-efficient operation, precise airflow control, and quieter performance compared to traditional brushed motors.
  • Aerospace and Aviation: Brushless AC motors are employed in various aerospace and aviation applications, such as aircraft actuators, flight control systems, and auxiliary power units. The motors offer lightweight design, high power density, and reliable operation in demanding environments.
  • Medical Equipment: Many medical devices and equipment, including surgical tools, imaging systems, and laboratory equipment, utilize brushless AC motors. The motors provide precise control, low noise, and long life, ensuring the reliability and effectiveness of medical procedures.
  • Home Appliances: Brushless AC motors are increasingly used in home appliances such as refrigerators, washing machines, and dishwashers. They offer energy-efficient operation, reduced noise, and enhanced durability compared to traditional brushed motors.
  • Renewable Energy: Brushless AC motors play a crucial role in renewable energy systems like wind turbines and solar tracking systems. Their high efficiency and precise control contribute to optimizing energy generation and harnessing renewable resources effectively.
  • Electronics and Computer Cooling: Brushless AC motors are utilized in electronics and computer cooling applications, including fans and heatsinks. The motors provide efficient heat dissipation, reliable cooling, and quiet operation to prevent overheating and ensure the optimal performance of electronic components.

These are just a few examples of the many applications where brushless AC motors are commonly used. Their versatility, efficiency, reliability, and precise control make them an ideal choice across various industries and sectors.

brushless ac motor

How does the efficiency of a brushless AC motor compare to other motor types?

The efficiency of a motor refers to its ability to convert electrical power into mechanical power with minimal losses. Brushless AC motors are known for their high efficiency compared to other motor types. Here’s a detailed explanation of how the efficiency of brushless AC motors compares to other motor types:

1. Brushed DC Motors: Brushed DC motors, which use carbon brushes and a commutator, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed DC motors introduce friction and electrical losses, reducing overall efficiency. Additionally, the brush contact can cause sparking and wear over time, further impacting efficiency. Brushless AC motors, which eliminate the brushes and commutator, offer higher efficiency due to reduced friction and electrical losses.

2. Induction Motors: Induction motors are a type of AC motor commonly used in various applications. While induction motors are generally efficient, brushless AC motors can offer even higher efficiency. Brushless AC motors benefit from the absence of rotor windings and the elimination of energy losses associated with rotor resistance in induction motors. Additionally, brushless AC motors can achieve higher power factor and better control, further contributing to their overall efficiency.

3. Brushed AC Motors: Brushed AC motors, which use brushes and a commutator similar to brushed DC motors, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed AC motors introduce friction, wear, and electrical losses, reducing overall efficiency. Brushless AC motors eliminate these components, resulting in higher efficiency and improved performance.

4. Permanent Magnet Synchronous Motors (PMSMs): Brushless AC motors, also known as permanent magnet synchronous motors (PMSMs), are highly efficient compared to other motor types. PMSMs utilize permanent magnets on the rotor, eliminating the need for rotor windings and associated losses. The absence of brushes and commutators, as well as the use of advanced control techniques, contribute to the high efficiency of brushless AC motors. PMSMs are widely used in applications that require high efficiency, such as electric vehicles, industrial automation, and renewable energy systems.

It’s important to note that the efficiency of a motor can also depend on factors such as motor design, size, operating conditions, and control mechanisms. While brushless AC motors generally offer high efficiency, specific motor models and variations may vary in their efficiency performance. It is advisable to refer to the motor manufacturer’s specifications and efficiency data for accurate comparisons and selection of the most suitable motor for a given application.

brushless ac motor

Can brushless AC motors be retrofitted into systems designed for brushed motors?

Yes, in many cases, brushless AC motors can be retrofitted into systems that were originally designed for brushed motors. However, there are several factors to consider when retrofitting a brushless AC motor into a system designed for brushed motors. Here’s a detailed explanation:

1. Physical Compatibility: The physical dimensions and mounting arrangements of the brushless AC motor need to be compatible with the existing system. Careful consideration should be given to ensure that the brushless motor can fit within the available space and can be properly mounted in the system without any modifications to the structure or frame.

2. Electrical Compatibility: Brushed motors and brushless AC motors have different electrical characteristics. Brushed motors typically operate on direct current (DC), while brushless AC motors require alternating current (AC) power and often need electronic motor controllers for proper operation. The electrical infrastructure of the system should be evaluated to determine if it can support the power requirements and control mechanisms of the brushless AC motor.

3. Control System: Brushless AC motors require specialized control systems to operate effectively. These control systems typically include motor controllers or drives that provide the necessary power and control signals. The existing control system in the system designed for brushed motors may need to be modified or replaced to accommodate the requirements of the brushless AC motor. This may involve rewiring, integrating new control components, or updating the software interface.

4. Interface Compatibility: The interface between the motor and the system, such as shaft dimensions, coupling mechanisms, or load requirements, must be evaluated for compatibility. If the brushless AC motor has different shaft dimensions or requires different coupling mechanisms, appropriate adapters or modifications may be necessary to ensure a proper connection with the system’s load or driven equipment.

5. Performance Requirements: Consideration should be given to whether the performance characteristics of the brushless AC motor are suitable for the intended application in the retrofitted system. This includes factors such as torque, speed range, efficiency, and control capabilities. It is important to ensure that the brushless AC motor can meet or exceed the performance requirements of the system previously served by the brushed motor.

6. Cost and Feasibility: Retrofitting a system designed for brushed motors with brushless AC motors can involve costs related to motor procurement, modification of the system, and integration of control components. A cost-benefit analysis should be performed to determine the feasibility and economic viability of the retrofitting project.

While it is possible to retrofit brushless AC motors into systems designed for brushed motors, it is recommended to consult with motor and system experts or engineers to assess the compatibility, feasibility, and potential challenges of the retrofitting process. Their expertise can help ensure a successful transition to brushless AC motors while maximizing the benefits and performance of the retrofitted system.

China supplier 180st-M40015 6000W 22A Brushless AC Motor   vacuum pump oil	China supplier 180st-M40015 6000W 22A Brushless AC Motor   vacuum pump oil
editor by CX 2024-05-06

China supplier Y2-280s-4 75kw 100HP 380V 400V 1500rpm Brushless AC 3 Three Phase Induction Electric Motor 75 Kw 100 HP 380 400 V Volt 1500 Rpm vacuum pump diy

Product Description

Product Description
Y series motors are totally enclosed and fan cooled(TFEC).Three-phase squirrel cage induction motors. They are newly designed in conformity with the relevant requirements oi IEC standards. Y series motors have outstanding performance, such as high efficiency, energy-saving, high starting torque, low noise, little vibration, reliable operation and easy maintenance, etc.
Y series motors are widely used in many places, where do exist combustible, explosive or corrosive, and with any special
requirements, such as drilling machines, pumps, fans, mixer, transport machines, food machines agriculture machines and equipments etc.
 

Y2 Series motors are totally enclosed fan cooled(TEFC). squirrel cage three-phase induction motors,developed with new technique They are renewal and upgrading products of Y series The mounting dimension is fully conformed with IEC standard .
The motors have the merits of beautiful modeling .compact structure ,low noise,high efficiency,large staring torque, easy serving, etc The motors are adopted with F class insulation and designed with assessing method for insulation
practice. It enhances greatly motor’s safety and reliability.These motors have reached an international advanced level Y2 series motors can be widely used in various machines and equipments. such as drilling machines,blowers
,pumps,compressors,transporters,agricultural and food processing machines.
 

Y3 series three-phase asynchronous motors, developed with new techniques. Aluminium body.
Y3 series motors are defined as totally enclosed, fan cooled, squirrel cage type and noted for their novel design, beautiful
model, compact structure, low noise, high efficiency, large torque, excellent starting performance, easy serving, etc.
The motors are adopted with F class insulation and designed with assessing method for insulation system according to international practice,
it have greatly reached an international advanced level of the same kind of products at the initial days of 90s.
Y3 series motors can be widely used as driving equipments of various machineries, such as machine tools, blowers, pumps,
compressors, transporters, agricultural and food processing.
Pedestal installation size and centre height and other indexes of the motor completely measured by Y3 series three-phase asynchronous motor.
 

Why choose us
Product parameters
Company profile

Packging &Shipping

FAQ
Feedback /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal
Speed: 1000rpm/1500rpm/3000rpm
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2/4/6/8
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

Can you explain the working principle of a brushless AC motor in simple terms?

A brushless AC motor operates based on the principles of electromagnetism and electronic control. Here’s a simplified explanation of the working principle:

A brushless AC motor consists of two main components: a stator and a rotor. The stator is the stationary part of the motor, while the rotor is the rotating part.

The stator contains multiple coils of wire, known as windings, which are evenly spaced around the inner circumference. These windings are energized with alternating current (AC) from an external power source.

The rotor, on the other hand, consists of permanent magnets or electromagnets. The number of magnets corresponds to the number of windings in the stator.

When the AC power is supplied to the stator windings, it creates a rotating magnetic field. This rotating magnetic field induces a magnetic force on the magnets in the rotor, causing the rotor to rotate.

To ensure the rotor rotates in synchronization with the rotating magnetic field, brushless AC motors employ electronic commutation. Electronic sensors, such as Hall effect sensors, are placed inside the motor to detect the position of the rotor magnets.

Based on the input from the sensors, an electronic controller determines the precise timing to switch the current flow in the stator windings. By switching the current at the right moment, the controller ensures that the magnetic force on the rotor magnets is always in the proper direction to generate continuous rotation.

This process of electronic commutation and precise switching of current in the stator windings allows for accurate control of the motor’s speed, torque, and direction of rotation.

Overall, the working principle of a brushless AC motor involves the creation of a rotating magnetic field in the stator through energized windings, and the use of electronic commutation to accurately control the rotation of the rotor magnets. This combination of electromagnetism and electronic control enables brushless AC motors to provide efficient and precise motor operation in various applications.

brushless ac motor

How does the efficiency of a brushless AC motor compare to other motor types?

The efficiency of a motor refers to its ability to convert electrical power into mechanical power with minimal losses. Brushless AC motors are known for their high efficiency compared to other motor types. Here’s a detailed explanation of how the efficiency of brushless AC motors compares to other motor types:

1. Brushed DC Motors: Brushed DC motors, which use carbon brushes and a commutator, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed DC motors introduce friction and electrical losses, reducing overall efficiency. Additionally, the brush contact can cause sparking and wear over time, further impacting efficiency. Brushless AC motors, which eliminate the brushes and commutator, offer higher efficiency due to reduced friction and electrical losses.

2. Induction Motors: Induction motors are a type of AC motor commonly used in various applications. While induction motors are generally efficient, brushless AC motors can offer even higher efficiency. Brushless AC motors benefit from the absence of rotor windings and the elimination of energy losses associated with rotor resistance in induction motors. Additionally, brushless AC motors can achieve higher power factor and better control, further contributing to their overall efficiency.

3. Brushed AC Motors: Brushed AC motors, which use brushes and a commutator similar to brushed DC motors, typically have lower efficiency compared to brushless AC motors. The brushes and commutator in brushed AC motors introduce friction, wear, and electrical losses, reducing overall efficiency. Brushless AC motors eliminate these components, resulting in higher efficiency and improved performance.

4. Permanent Magnet Synchronous Motors (PMSMs): Brushless AC motors, also known as permanent magnet synchronous motors (PMSMs), are highly efficient compared to other motor types. PMSMs utilize permanent magnets on the rotor, eliminating the need for rotor windings and associated losses. The absence of brushes and commutators, as well as the use of advanced control techniques, contribute to the high efficiency of brushless AC motors. PMSMs are widely used in applications that require high efficiency, such as electric vehicles, industrial automation, and renewable energy systems.

It’s important to note that the efficiency of a motor can also depend on factors such as motor design, size, operating conditions, and control mechanisms. While brushless AC motors generally offer high efficiency, specific motor models and variations may vary in their efficiency performance. It is advisable to refer to the motor manufacturer’s specifications and efficiency data for accurate comparisons and selection of the most suitable motor for a given application.

brushless ac motor

How do brushless AC motors contribute to the efficiency of HVAC systems?

Brushless AC motors play a significant role in improving the efficiency of HVAC (heating, ventilation, and air conditioning) systems. These motors offer several advantages over traditional motor technologies, such as brushed motors or older induction motors. Here’s a detailed explanation of how brushless AC motors contribute to the efficiency of HVAC systems:

  • Higher Energy Efficiency: Brushless AC motors are known for their higher energy efficiency compared to brushed motors or older motor technologies. They achieve this efficiency through various mechanisms:
    • Reduced Energy Losses: Brushless AC motors eliminate the need for brushes and commutators, which are sources of friction, wear, and electrical losses in brushed motors. By eliminating these components, brushless AC motors reduce energy losses and improve overall efficiency.
    • Better Motor Control: Brushless AC motors utilize advanced control techniques, such as sensor feedback and precise voltage and frequency control, to optimize motor performance. This control allows for smoother operation, improved speed regulation, and reduced energy consumption.
    • Variable Speed Operation: Brushless AC motors can operate at variable speeds, allowing them to adjust their power output to match the required load. By running the motor at the most efficient speed for a given operating condition, energy consumption is minimized, resulting in higher overall system efficiency.
  • Improved System Performance: The efficiency of an HVAC system is not solely dependent on the motor itself but also on how the motor interacts with the rest of the system. Brushless AC motors contribute to improved system performance in the following ways:
    • Enhanced Control and Integration: Brushless AC motors can be easily integrated into advanced control systems, allowing for precise regulation of motor speed, airflow, and temperature. This integration enables more efficient operation of the entire HVAC system, optimizing energy usage and improving comfort.
    • Variable Air Volume (VAV) Systems: Brushless AC motors are well-suited for VAV systems commonly used in HVAC applications. VAV systems adjust the airflow based on the cooling or heating demands of different zones. Brushless AC motors can modulate their speed and power output to match the varying airflow requirements, resulting in energy savings and improved comfort.
    • Improved Fan Efficiency: HVAC systems often rely on fans to circulate air. Brushless AC motors, with their higher energy efficiency and precise speed control, can drive fans more efficiently, reducing the energy consumed by the fan and improving overall system efficiency.
  • Longer Lifespan and Durability: Brushless AC motors are generally more reliable and durable compared to brushed motors. They have fewer moving parts, eliminating the wear and tear associated with brushes and commutators. This increased durability reduces maintenance needs and extends the lifespan of the motor, contributing to long-term efficiency gains in HVAC systems.
  • Reduced Noise and Vibration: Brushless AC motors operate with reduced noise and vibration levels compared to some other motor types. This characteristic enhances the overall comfort of HVAC systems and reduces the need for additional soundproofing measures, contributing to a more efficient and pleasant environment.

The use of brushless AC motors in HVAC systems offers substantial benefits in terms of energy efficiency, system performance, durability, and comfort. Integrating these motors into HVAC designs can lead to significant energy savings, reduced operating costs, and improved environmental sustainability.

China supplier Y2-280s-4 75kw 100HP 380V 400V 1500rpm Brushless AC 3 Three Phase Induction Electric Motor 75 Kw 100 HP 380 400 V Volt 1500 Rpm   vacuum pump diyChina supplier Y2-280s-4 75kw 100HP 380V 400V 1500rpm Brushless AC 3 Three Phase Induction Electric Motor 75 Kw 100 HP 380 400 V Volt 1500 Rpm   vacuum pump diy
editor by CX 2024-05-02

China supplier 6.5inch 500W 22n. M 48V 200kg Load DC Electric Brushless Agv Hub Motor vacuum pump oil near me

Product Description

Zltech low speed 4096 encoder 6.5inch 500W 22n. M 48V 17A 200kg Load dc Electric Brushless Agv drive wheel Hub Motor

 

FAQ

1. Factory or trader?
We are factory, and have professional R&D team as introduced in company information.

2. How about the delivery?
– Sample: 3-5 days.
– Bulk order: 15-30 days.

3. What is your after-sales services?
1. Free maintenance within 12 months guarantee, lifetime consultant.
2. Professional solutions in installation and maintence.

4. Why choose us?
1. Factory Price & 24/7 after-sale services.
2. From mold customization to material processing and welding, from fine components to finished assembly, 72 processes, 24 control points, strict aging, finished product inspection.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Household Appliances, Car
Operating Speed: Low Speed
Function: Driving
Samples:
US$ 208/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

How do brushless motors compare to brushed motors in terms of lifespan and reliability?

When comparing brushless motors to brushed motors, there are notable differences in terms of lifespan and reliability. Here’s a detailed explanation of how brushless motors compare to brushed motors in these aspects:

1. Lifespan:

Brushed motors typically have a shorter lifespan compared to brushless motors. This is primarily due to the mechanical wear and tear associated with brushed motors. In brushed motors, the brushes and commutator make physical contact, causing friction, heat generation, and eventual wear. Over time, the brushes wear down and the commutator may become worn or damaged, leading to degraded motor performance and eventual failure. On the other hand, brushless motors do not have brushes or commutators, eliminating the mechanical wear components. As a result, brushless motors generally have a longer lifespan and can operate for thousands of hours with minimal maintenance.

2. Reliability:

Brushless motors are generally considered more reliable than brushed motors. The absence of brushes and commutators in brushless motors reduces the risk of failure due to mechanical wear and associated issues like brush sparking and arcing. The elimination of these moving parts also leads to reduced friction, less heat generation, and lower chances of electrical or mechanical failures. Additionally, brushless motors often benefit from advanced control systems that can monitor and protect against various operating conditions, enhancing their overall reliability.

3. Operating Conditions:

Brushless motors are better suited for demanding operating conditions compared to brushed motors. The absence of brushes and commutators in brushless motors means there are no physical contacts that can generate sparks or cause electrical arcing. This makes brushless motors more suitable for applications where sparks or electrical noise can be problematic, such as in explosive or sensitive electronic environments. Furthermore, brushless motors can operate at higher speeds and handle higher torque loads than brushed motors, making them more versatile in a wide range of applications.

4. Maintenance:

Brushless motors generally require less maintenance compared to brushed motors. Brushed motors often require periodic maintenance to replace worn-out brushes and address commutator issues. Additionally, the presence of brushes can lead to carbon dust buildup, requiring regular cleaning and maintenance. In contrast, brushless motors have no brushes or commutators to replace or clean, significantly reducing the maintenance requirements. However, it’s important to note that brushless motors may still require periodic inspections, especially for cooling systems or bearings, to ensure optimal performance and reliability.

5. Efficiency:

Brushless motors are typically more efficient than brushed motors. The absence of brushes and commutators in brushless motors reduces energy losses associated with friction and electrical resistance. This improved efficiency results in several benefits, such as reduced power consumption, longer battery life (in battery-powered applications), and less heat generation. Brushless motors are known for their high power-to-weight ratio and can deliver higher torque output per unit of input power compared to brushed motors.

In summary, brushless motors generally offer a longer lifespan and higher reliability compared to brushed motors. The absence of brushes and commutators reduces mechanical wear and associated failures, making brushless motors more durable. They are better suited for demanding operating conditions, require less maintenance, and offer improved efficiency. These factors have made brushless motors increasingly popular in various applications, including robotics, electric vehicles, industrial automation, and aerospace, where reliability and longevity are essential.

brushless motor

How does the control system of a brushless motor contribute to precise speed regulation?

The control system of a brushless motor plays a crucial role in achieving precise speed regulation, allowing for accurate and stable motor operation. By utilizing advanced control algorithms and feedback mechanisms, the control system effectively manages the power delivery and motor performance, resulting in precise speed control. Here’s a detailed explanation of how the control system of a brushless motor contributes to precise speed regulation:

  • Electronic Commutation: Brushless motors employ electronic commutation, which replaces traditional brushes and commutators with solid-state electronic components. The control system utilizes sensors, such as Hall effect sensors or encoders, to accurately detect the rotor position. By knowing the precise rotor position, the control system can switch the power supply to the motor windings at the optimal timing, ensuring smooth rotation and precise speed control.
  • Pulse Width Modulation (PWM): The control system utilizes pulse width modulation to regulate the power delivered to the motor windings. By adjusting the width of the electrical pulses, the control system can control the average voltage applied to the motor, thereby regulating the motor speed. Precise timing and modulation of the PWM signals allow for fine-grained control over the motor speed, enabling precise speed regulation with minimal speed fluctuations.
  • Feedback Control: The control system incorporates feedback control mechanisms to monitor and regulate the motor speed. Feedback is typically obtained from position sensors, such as encoders or Hall effect sensors, which provide real-time information about the rotor position. This feedback is compared to the desired speed reference, and any deviations are used to adjust the motor control signals. By continuously comparing the actual speed with the desired speed, the control system makes corrective adjustments to maintain precise speed regulation.
  • Proportional-Integral-Derivative (PID) Control: Many brushless motor control systems employ PID control algorithms to achieve precise speed regulation. PID control utilizes a combination of proportional, integral, and derivative control actions to minimize speed errors and maintain stable operation. The proportional control component responds to the current speed error, the integral control component integrates past speed errors to eliminate steady-state errors, and the derivative control component anticipates speed changes to improve response time. The PID control algorithm continuously adjusts the motor control signals based on the speed error, contributing to precise speed regulation.
  • Closed-Loop Control: The control system of a brushless motor typically operates in a closed-loop configuration, where the feedback from position sensors is used to regulate the motor speed. Closed-loop control ensures that the motor speed accurately follows the desired reference speed, even in the presence of external disturbances or varying load conditions. By continuously comparing the actual speed with the desired speed and making real-time adjustments, closed-loop control provides precise speed regulation and improves the motor’s ability to maintain a constant speed under changing operating conditions.
  • Advanced Control Techniques: The control system may incorporate advanced control techniques, such as field-oriented control (FOC) or vector control, to achieve even higher precision in speed regulation. These techniques involve transforming the motor currents and voltages into a rotating reference frame, allowing for independent control of the magnetizing and torque-producing components. By decoupling these components and controlling them separately, advanced control techniques enable precise control of the motor speed and improve overall performance.

In summary, the control system of a brushless motor contributes to precise speed regulation through electronic commutation, pulse width modulation, feedback control, PID control algorithms, closed-loop control, and advanced control techniques. By utilizing these control strategies, the control system ensures accurate and stable motor operation, allowing for precise speed control and minimizing speed deviations in various applications.

brushless motor

In which industries are brushless motors commonly employed, and what are their key roles?

Brushless motors find applications in a wide range of industries, thanks to their numerous advantages and capabilities. Here are some of the industries where brushless motors are commonly employed and their key roles:

1. Automotive Industry:

In the automotive industry, brushless motors are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They play a crucial role in providing propulsion for these vehicles, driving the wheels and ensuring efficient power delivery. Brushless motors offer high efficiency, precise control, and fast acceleration, making them ideal for electric drivetrains. Additionally, they are employed in various automotive subsystems such as electric power steering, HVAC systems, cooling fans, and braking systems.

2. Aerospace and Aviation:

Brushless motors have significant applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations. Their high power-to-weight ratio, compact size, and high-speed capabilities make them well-suited for aerospace requirements.

3. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They power robotic arms, joints, and grippers, enabling accurate and controlled movements. Brushless motors offer high torque, precise position control, and rapid acceleration, making them vital for industrial robotics, collaborative robots (cobots), and automated manufacturing processes. Their compact size and efficiency also contribute to the design and performance of robotic systems.

4. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes. Their ability to handle high loads, operate at high speeds, and offer precise control makes them valuable in demanding industrial environments.

5. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of the industries where brushless motors are commonly employed. Their efficiency, reliability, precise control, compact size, and high-performance characteristics make them versatile and valuable in many other sectors as well. As technology continues to advance, brushless motors are likely to find new applications and play increasingly important roles in various industries.

China supplier 6.5inch 500W 22n. M 48V 200kg Load DC Electric Brushless Agv Hub Motor   vacuum pump oil near me		China supplier 6.5inch 500W 22n. M 48V 200kg Load DC Electric Brushless Agv Hub Motor   vacuum pump oil near me
editor by CX 2024-04-26

China supplier Electric Motor BLDC Motor DC Motor Electrical Motor Brushless DC Motor Micro Motor Blender Motor Mixer Motor AC Motor China Motor Electric DC Motor vacuum pump ac system

Product Description

Product Description

BLDC Motor is featured with electronically commutation, extremely wide speed range and an outstandingly long life span, and  mainly used in applications that low noise and low vibration is a prime requirement, such as consumer robot,coffee grinder, fan&air purifier, vacuum & blower ,etc.

In such cases, CJC’s high-performance BLDC motors are for your products: You are looking for motors with fast and stable responses when starting and stopping a machine. Your projects output higher power and run significantly wider speed and torque.

CH7160M220 is mainly used in household appliances such as coffee makers, ,commercial blenders, low speed juicers,and direct drive robot for household and commercial use. Please consider the following requirements before requesting customization: motor size, controller, motor ratings, gearbox(if any), or other significant factors.

Parameter:
 

Rated Voltage 220V Rated Speed 700-5500r/min Torque 1.1N.m
Rated Current 6A Rated Power 550W No Load Current 0.3A Max@5300rpm

 

Drawing:

Product Characteristics

 

 

Innovative Product Display

 

 

Product Usage

 

 

 

Company Profile

 

 

Certifications

 

Exhibition

 

 

FAQ

FAQ
Q: Can I visit your factory before we place the order?

A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please  contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: TT, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other shipping way. Please contact us if you need other shipping way before shipment.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

Can you explain the working principle of a brushless AC motor in simple terms?

A brushless AC motor operates based on the principles of electromagnetism and electronic control. Here’s a simplified explanation of the working principle:

A brushless AC motor consists of two main components: a stator and a rotor. The stator is the stationary part of the motor, while the rotor is the rotating part.

The stator contains multiple coils of wire, known as windings, which are evenly spaced around the inner circumference. These windings are energized with alternating current (AC) from an external power source.

The rotor, on the other hand, consists of permanent magnets or electromagnets. The number of magnets corresponds to the number of windings in the stator.

When the AC power is supplied to the stator windings, it creates a rotating magnetic field. This rotating magnetic field induces a magnetic force on the magnets in the rotor, causing the rotor to rotate.

To ensure the rotor rotates in synchronization with the rotating magnetic field, brushless AC motors employ electronic commutation. Electronic sensors, such as Hall effect sensors, are placed inside the motor to detect the position of the rotor magnets.

Based on the input from the sensors, an electronic controller determines the precise timing to switch the current flow in the stator windings. By switching the current at the right moment, the controller ensures that the magnetic force on the rotor magnets is always in the proper direction to generate continuous rotation.

This process of electronic commutation and precise switching of current in the stator windings allows for accurate control of the motor’s speed, torque, and direction of rotation.

Overall, the working principle of a brushless AC motor involves the creation of a rotating magnetic field in the stator through energized windings, and the use of electronic commutation to accurately control the rotation of the rotor magnets. This combination of electromagnetism and electronic control enables brushless AC motors to provide efficient and precise motor operation in various applications.

brushless ac motor

Can brushless AC motors be used in both industrial and residential settings?

Yes, brushless AC motors can be used in both industrial and residential settings. The versatility and advantages of brushless AC motors make them suitable for a wide range of applications. Here’s a detailed explanation:

Industrial Applications:

Brushless AC motors are widely used in various industrial applications due to their high efficiency, reliability, and precise control. Some common industrial applications where brushless AC motors are utilized include:

  • Industrial Machinery: Brushless AC motors are often used in industrial machinery such as conveyor systems, pumps, compressors, and fans. Their high torque, variable speed control, and efficient operation make them suitable for driving heavy loads and providing reliable performance in demanding industrial environments.
  • Robotics: Brushless AC motors find extensive use in robotics applications. The precise control capabilities of brushless motors, coupled with their compact size and high power density, make them ideal for powering robotic arms, grippers, and other motion control systems.
  • Automotive: Brushless AC motors are increasingly being employed in electric and hybrid vehicles. They offer high power-to-weight ratios, efficient operation, and regenerative braking capabilities, making them suitable for propulsion systems, power steering, and other automotive applications.
  • Aerospace: Brushless AC motors are used in aerospace applications, including aircraft systems, control surfaces, and landing gear mechanisms. Their reliability, compactness, and high performance make them suitable for the demanding requirements of the aerospace industry.
  • Industrial Automation: Brushless AC motors play a critical role in industrial automation systems. They are used in CNC machines, robotic arms, assembly lines, and other automated processes, providing accurate and reliable motion control.

Residential Applications:

Brushless AC motors are also finding increased use in residential settings, thanks to their energy efficiency, quiet operation, and long lifespan. Some common residential applications where brushless AC motors are utilized include:

  • Appliances: Brushless AC motors are employed in various household appliances such as refrigerators, air conditioners, washing machines, and dishwashers. They offer energy-efficient operation, precise control, and reduced noise levels, enhancing the performance and user experience of these appliances.
  • HVAC Systems: Brushless AC motors are used in heating, ventilation, and air conditioning (HVAC) systems. They provide efficient and reliable operation for fans, blowers, and pumps, contributing to energy savings and optimal indoor comfort.
  • Smart Home Devices: Brushless AC motors are integrated into smart home devices, including motorized window blinds, smart locks, and automated lighting systems. They offer quiet operation, precise positioning, and energy efficiency, enhancing the convenience and functionality of these devices.
  • Power Tools: Brushless AC motors are increasingly used in power tools such as drills, saws, and sanders. They deliver high power output, longer runtime, and longer tool life compared to brushed motors, making them desirable for DIY enthusiasts and professionals alike.

With their versatility, energy efficiency, and reliability, brushless AC motors have become a preferred choice in both industrial and residential settings. They offer numerous benefits, including improved performance, reduced maintenance requirements, and enhanced energy savings, making them suitable for a wide range of applications across various sectors.

brushless ac motor

Are there limitations to the size or capacity of brushless AC motors?

Yes, there are limitations to the size or capacity of brushless AC motors. While brushless AC motors offer several advantages over other motor types, such as higher efficiency, better speed control, and longer lifespan, they do have certain limitations that need to be considered. Here’s a detailed explanation of these limitations:

1. Physical Size: Brushless AC motors tend to be larger in size compared to brushed motors of similar power ratings. This is primarily due to the additional components required for the motor’s operation, such as the rotor position sensors and the motor controller. As a result, there may be practical limitations on the size of brushless AC motors that can be used in certain applications where space is limited or where compact motor designs are required.

2. Power Density: Brushless AC motors generally have lower power density compared to some other motor types, such as brushed DC motors or certain types of high-performance motors. Power density refers to the amount of power that can be delivered per unit volume or weight of the motor. This limitation can impact applications where high power-to-size or power-to-weight ratios are critical, such as in aerospace or automotive applications.

3. Cost: Brushless AC motors can be more expensive compared to other motor types, especially for smaller power ratings. The additional components and complex control systems required for brushless AC motor operation contribute to higher manufacturing costs. This cost limitation may make brushless AC motors less economically viable for certain applications, particularly those with low power requirements or strict budget constraints.

4. High-Speed Operation: Brushless AC motors may face challenges when operating at extremely high speeds. The centrifugal forces acting on the rotor components can increase significantly at high speeds, leading to increased mechanical stress and potential issues with rotor balancing. Specialized designs and materials may be required to mitigate these challenges and ensure safe and reliable high-speed operation.

5. Complex Control Systems: Brushless AC motors require sophisticated control systems, such as motor controllers or drives, to operate effectively. These control systems must accurately synchronize the switching of the inverter and the rotor position to achieve optimal motor performance. The design, implementation, and maintenance of these control systems can be complex and may require specialized knowledge and expertise.

Despite these limitations, brushless AC motors are widely used in various applications, ranging from industrial machinery and robotics to electric vehicles and renewable energy systems. Continuous advancements in motor technology and control systems are addressing many of these limitations, allowing brushless AC motors to be applied in a broader range of applications and power capacities.

It’s crucial to consider the specific requirements and constraints of the intended application when selecting a motor type. Consulting with motor experts or engineers can provide valuable insights into the suitability and limitations of brushless AC motors for a given application.

China supplier Electric Motor BLDC Motor DC Motor Electrical Motor Brushless DC Motor Micro Motor Blender Motor Mixer Motor AC Motor China Motor Electric DC Motor   vacuum pump ac system	China supplier Electric Motor BLDC Motor DC Motor Electrical Motor Brushless DC Motor Micro Motor Blender Motor Mixer Motor AC Motor China Motor Electric DC Motor   vacuum pump ac system
editor by CX 2024-04-26

China supplier CHINAMFG 220V Asynchronous Motor Single Phase Brushless Motor Air Conditioner Parts AC Fan Motor vacuum pump oil

Product Description

 RuiJP 220V Asynchronous Motor Single Phase Brushless Motor Air Conditioner Parts AC Fan Motor

 

Product Description

 

Product name Air Conditioning Motor
Frequency 50/60Hz
Color White
OEM,ODM Available
Power 18W
Current 0.18A
Speed(RPM) 1270r/min


 

Detailed Photos

Main products

 

Company Profile

Workshop

Exhibition

 

Certifications

 

 

 


 

FAQ

 

1 Q: Are you a manufacturer or trading company?

A:We are professional drain pump and motor manufacturer for almost 10 years.

2. Q: What’s your delivery time?

A: 1. The stock samples can be sent to you within 3-5 days by international express.

2. The batch order can be shipped to you in about 25-30 days after order confirmation( by air or by sea).

3 Q: Is it all right to make customer’s own brand name?

A:Yes, we accept OEM.

4 Q: What is your loading port?

A:Xihu (West Lake) Dis. port.

5 Q: What are your payment terms?

A:We can acceptT/T,L/C,DP,.

 

Any more question.Please contact us without any hesitation.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Air Conditioner
Type: Fan Motor
Power: Electric
Rated Voltage: 220-240V
Frequence: 50/60Hz
Certificate: CE
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless ac motor

What is the role of electronic commutation in brushless AC motors?

Electronic commutation plays a crucial role in the operation of brushless AC motors. It enables precise control over the motor’s performance, including speed, torque, and direction of rotation. Here’s a detailed explanation of the role of electronic commutation:

In a brushless AC motor, the rotor consists of permanent magnets or electromagnets, while the stator contains multiple coils of wire known as windings. The stator windings are energized with alternating current (AC) to create a rotating magnetic field. However, for the motor to rotate smoothly and maintain synchronization with the rotating magnetic field, the current flow in the stator windings must be switched at specific moments.

This is where electronic commutation comes into play. Electronic commutation involves the use of sensors, typically Hall effect sensors, placed inside the motor to detect the position of the rotor magnets. These sensors provide feedback to an electronic controller, which determines the precise timing for switching the current flow in the stator windings.

The electronic controller uses the information from the sensors to determine which windings should be energized and when. It generates signals to activate the appropriate power switches or transistors, which control the current flow in the stator windings. By switching the current flow in a carefully timed manner, the controller ensures that the magnetic force on the rotor magnets is always in the correct direction to generate continuous rotation.

Electronic commutation offers several advantages in brushless AC motors:

  • Precise Control: Electronic commutation allows for precise control over the motor’s operation. The controller can adjust the timing and duration of current switching to achieve the desired speed, torque, and direction of rotation.
  • Efficiency: By precisely controlling the current flow, electronic commutation minimizes energy losses and improves overall motor efficiency. The controller can optimize the motor’s performance to match the load requirements, reducing unnecessary power consumption.
  • Smooth Operation: Electronic commutation results in smoother motor operation compared to mechanical commutation in brushed motors. The absence of physical brushes and commutators eliminates the mechanical limitations and potential sources of friction, leading to quieter and vibration-free operation.
  • Variable Speed Control: Electronic commutation facilitates variable speed control in brushless AC motors. By adjusting the timing and frequency of current switching, the controller can vary the motor’s rotational speed over a wide range, offering flexibility in different applications.
  • Improved Reliability: Electronic commutation eliminates the wear and tear associated with brushes and commutators in traditional brushed motors. This contributes to the overall reliability and durability of brushless AC motors, reducing the need for frequent maintenance and replacement of worn-out components.

In summary, electronic commutation plays a vital role in brushless AC motors by providing precise control over the motor’s operation, improving efficiency, enabling variable speed control, ensuring smooth operation, and enhancing overall reliability. It is the key mechanism that allows brushless AC motors to deliver efficient and accurate motor performance in various applications.

brushless ac motor

Can brushless AC motors be used in both industrial and residential settings?

Yes, brushless AC motors can be used in both industrial and residential settings. The versatility and advantages of brushless AC motors make them suitable for a wide range of applications. Here’s a detailed explanation:

Industrial Applications:

Brushless AC motors are widely used in various industrial applications due to their high efficiency, reliability, and precise control. Some common industrial applications where brushless AC motors are utilized include:

  • Industrial Machinery: Brushless AC motors are often used in industrial machinery such as conveyor systems, pumps, compressors, and fans. Their high torque, variable speed control, and efficient operation make them suitable for driving heavy loads and providing reliable performance in demanding industrial environments.
  • Robotics: Brushless AC motors find extensive use in robotics applications. The precise control capabilities of brushless motors, coupled with their compact size and high power density, make them ideal for powering robotic arms, grippers, and other motion control systems.
  • Automotive: Brushless AC motors are increasingly being employed in electric and hybrid vehicles. They offer high power-to-weight ratios, efficient operation, and regenerative braking capabilities, making them suitable for propulsion systems, power steering, and other automotive applications.
  • Aerospace: Brushless AC motors are used in aerospace applications, including aircraft systems, control surfaces, and landing gear mechanisms. Their reliability, compactness, and high performance make them suitable for the demanding requirements of the aerospace industry.
  • Industrial Automation: Brushless AC motors play a critical role in industrial automation systems. They are used in CNC machines, robotic arms, assembly lines, and other automated processes, providing accurate and reliable motion control.

Residential Applications:

Brushless AC motors are also finding increased use in residential settings, thanks to their energy efficiency, quiet operation, and long lifespan. Some common residential applications where brushless AC motors are utilized include:

  • Appliances: Brushless AC motors are employed in various household appliances such as refrigerators, air conditioners, washing machines, and dishwashers. They offer energy-efficient operation, precise control, and reduced noise levels, enhancing the performance and user experience of these appliances.
  • HVAC Systems: Brushless AC motors are used in heating, ventilation, and air conditioning (HVAC) systems. They provide efficient and reliable operation for fans, blowers, and pumps, contributing to energy savings and optimal indoor comfort.
  • Smart Home Devices: Brushless AC motors are integrated into smart home devices, including motorized window blinds, smart locks, and automated lighting systems. They offer quiet operation, precise positioning, and energy efficiency, enhancing the convenience and functionality of these devices.
  • Power Tools: Brushless AC motors are increasingly used in power tools such as drills, saws, and sanders. They deliver high power output, longer runtime, and longer tool life compared to brushed motors, making them desirable for DIY enthusiasts and professionals alike.

With their versatility, energy efficiency, and reliability, brushless AC motors have become a preferred choice in both industrial and residential settings. They offer numerous benefits, including improved performance, reduced maintenance requirements, and enhanced energy savings, making them suitable for a wide range of applications across various sectors.

brushless ac motor

What role does the inverter play in the operation of a brushless AC motor?

The inverter plays a crucial role in the operation of a brushless AC motor. It is responsible for converting the DC power from an external power source into the AC power required to drive the motor. Here’s a detailed explanation of the role of the inverter in the operation of a brushless AC motor:

The inverter serves as the interface between the power supply and the brushless AC motor. It consists of power electronic devices, such as insulated-gate bipolar transistors (IGBTs) or metal-oxide-semiconductor field-effect transistors (MOSFETs), which control the switching of electrical signals to generate the desired AC voltage and frequency for the motor.

1. Power Conversion: The primary function of the inverter is to convert the DC power from the external power source, such as a battery or power grid, into the three-phase AC power required by the brushless AC motor. The inverter achieves this conversion by rapidly switching the DC voltage on its input side to create a series of voltage pulses, which are then filtered and shaped to generate the desired AC waveform.

2. Variable Frequency Control: In addition to converting DC power to AC power, the inverter allows for precise control of the motor’s speed and torque by varying the frequency of the generated AC voltage. By adjusting the switching frequency of the inverter’s power electronic devices, the inverter can change the frequency of the AC voltage supplied to the motor. This variable frequency control enables smooth speed regulation and efficient operation of the brushless AC motor across a wide range of speeds.

3. Motor Synchronization: The inverter synchronizes its output voltage and frequency with the rotor position of the brushless AC motor. This synchronization is crucial for accurate and efficient motor operation. The inverter uses position sensors, such as Hall effect sensors or encoders, to detect the rotor position and adjust the timing of the switching signals accordingly. By maintaining proper synchronization, the inverter ensures that the magnetic fields produced by the motor’s stator windings interact optimally with the rotor’s permanent magnets, resulting in smooth and efficient motor performance.

4. Control and Protection: The inverter includes control circuitry and algorithms to manage the operation of the brushless AC motor. It receives commands or feedback signals from the motor control system or user interface and adjusts the voltage and frequency output accordingly. The inverter also incorporates various protection mechanisms to safeguard the motor and itself from abnormal conditions such as overcurrent, overvoltage, or overheating. These protection features help prevent damage to the motor and ensure safe and reliable operation.

5. Energy Regeneration: In some applications, brushless AC motors can act as generators when decelerating or during braking. The inverter can take advantage of this regenerative capability by converting the electrical energy generated by the motor back into usable power. The inverter can feed this regenerated energy back to the power supply or store it in energy storage devices, such as capacitors or batteries, for later use. This energy regeneration feature improves overall system efficiency and can be particularly beneficial in applications where frequent deceleration or braking occurs.

The inverter is an integral component of the brushless AC motor system, responsible for converting the DC power supply into the appropriate AC power to drive the motor. Its ability to control voltage, frequency, and synchronization ensures precise and efficient motor operation. Proper selection, design, and configuration of the inverter are essential to optimize the performance, reliability, and overall system efficiency of brushless AC motor applications.

China supplier CHINAMFG 220V Asynchronous Motor Single Phase Brushless Motor Air Conditioner Parts AC Fan Motor   vacuum pump oil	China supplier CHINAMFG 220V Asynchronous Motor Single Phase Brushless Motor Air Conditioner Parts AC Fan Motor   vacuum pump oil
editor by CX 2024-04-26

China supplier 80mm 48V High Speed High Torque Brushless DC Motor for Medical Equipment vacuum pump oil near me

Product Description

 

BG 80BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 80BL01 48 220 3000 0.7 5.5 4000 1.37   2.1   16.5
BG 80BL02 310 440 6000 0.7 1.7 8000 0.4 2.1 5.1
BG 80BL03 48 400 3000 1.27 10 4000 2.5 30 30
We can also customize products according to customer requirements.

Established in 1994, HangZhou BG Motor Factory is a professional manufacturer of brushless DC motors, brushed DC motors, planetary gear motors, worm gear motors, Universal motors and AC motors. We have a plant area of 6000 square meters, multiple patent certificates, and we have the independent design and development capabilities and strong technical force, with an annual output of more than 1 million units. Since the beginning of its establishment, BG motor has focused on the overall solution of motors. We manufacture and design motors, provide professional customized services, respond quickly to customer needs, and actively help customers to solve problems. Our motor products are exported to 20 countries, including the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea etc.
Our founder, Mr. Sun, has more than 40 years of experience in motor technology, and our other engineers also have more than 15 years of experience, and 60% of our staff have more than 10 years of experience, and we can assure you that the quality of our motors is top notch.
The products cover AGV, underwater robots, robots, sewing machine industry, automobiles, medical equipment, automatic doors, lifting equipment, industrial equipment and have a wide range of applications.
We strive for CHINAMFG in the quality of each product, and we are only a small and sophisticated manufacturer.
Our vision: Drive the world CHINAMFG and make life better!

Q:1.What kind of motors can you provide?

A:At present, we mainly produce brushless DC motors, brush DC motors, AC motors, Universal Motors; the power of the motor is less than 5000W, and the diameter of the motor is not more than 200mm;

Q:2.Can you send me a price list?

A:For all of our motors, they are customized based on different requirements like lifetime, noise,voltage,and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3.Can l get some samples?

A:It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there are no further needs. If just sample testing before the official order and our MOQ,price and other terms are acceptable,we’d love to provide samples.

Q4:Can you provide OEM or ODM service?

A:Yes, OEM and ODM are both available, we have the professional R&D dept which can provide professional solutions for you.

Q5:Can l visit your factory before we place an order?

A:welcome to visit our factory, wear every pleased if we have the chance to know each other more.

Q:6.What’s the lead time for a regular order?

A:For orders, the standard lead time is 15-20 days and this time can be shorter or longer based on the different model,period and quantity.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Constant Speed
Excitation Mode: DC
Samples:
US$ 80/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What role do electronic speed controllers (ESCs) play in brushless motor systems?

Electronic Speed Controllers (ESCs) play a crucial role in brushless motor systems as they are responsible for controlling the speed, direction, and performance of the motor. Here’s a detailed explanation of the role of electronic speed controllers in brushless motor systems:

1. Power Regulation: One of the primary functions of an ESC is to regulate the power supplied to the brushless motor. The ESC acts as an intermediary between the power source (such as a battery) and the motor, ensuring that the motor receives the appropriate voltage and current to operate at the desired speed and torque levels. The ESC monitors the input power and adjusts it based on the control signals it receives.

2. Commutation: Brushless motors require precise commutation, which involves switching the current flow in the motor windings to maintain proper magnetic field alignment and generate rotation. The ESC is responsible for coordinating the commutation process by electronically timing and sequencing the current pulses sent to the motor windings. This ensures smooth and efficient motor operation, allowing the motor to generate the desired torque and rotational speed.

3. Speed Control: ESCs enable precise speed control in brushless motor systems. By adjusting the timing and duration of the current pulses sent to the motor windings, the ESC can regulate the motor’s rotational speed. This speed control functionality is essential in various applications, such as drones, RC vehicles, robotics, and industrial automation, where precise speed adjustments are required to achieve the desired performance and functionality.

4. Direction Control: In addition to speed control, ESCs also provide direction control for brushless motors. By reversing the sequence of the current pulses sent to the motor windings, the ESC can change the direction of rotation of the motor. This allows for bi-directional operation, enabling the motor to perform tasks that require both clockwise and counterclockwise rotation.

5. Protection and Safety Features: ESCs often incorporate various protection and safety features to safeguard the motor and the overall system. These features may include overcurrent protection, overtemperature protection, low-voltage cutoff, and motor lock-up detection. By monitoring various parameters and conditions, the ESC can detect potential issues or abnormalities and take appropriate actions to prevent damage to the motor, ESC, or other components.

6. Interface and Control: ESCs provide an interface for external control and communication. They are typically equipped with input connectors to receive control signals from a receiver or a microcontroller, allowing for remote control or integration into a larger control system. Additionally, ESCs may offer advanced control features such as programmability, adjustable acceleration profiles, and compatibility with various control protocols (e.g., PWM, PPM, or CAN bus).

7. Efficiency and Performance Optimization: ESCs contribute to the overall efficiency and performance optimization of brushless motor systems. Through advanced control algorithms and power electronics, ESCs can minimize power losses, maximize energy conversion efficiency, and optimize the motor’s performance characteristics. This results in improved system efficiency, longer battery life, and enhanced motor performance.

In summary, electronic speed controllers (ESCs) play a vital role in brushless motor systems by regulating power, coordinating commutation, enabling speed and direction control, providing protection and safety features, offering control interfaces, and optimizing system efficiency and performance. The ESC acts as the central control unit that bridges the gap between the power source, the motor, and the external control system, ensuring smooth and reliable operation of brushless motors across a wide range of applications.

brushless motor

Can brushless motors be used in both low-power and high-power applications?

Yes, brushless motors can be used in both low-power and high-power applications. The versatility and scalability of brushless motor technology allow them to be employed across a wide range of power requirements. Here’s how brushless motors are utilized in both low-power and high-power applications:

1. Low-Power Applications:

In low-power applications, brushless motors offer several advantages over other motor types. They are capable of delivering efficient and precise motion control even at low power levels. Some examples of low-power applications where brushless motors are commonly used include:

  • Consumer Electronics: Brushless motors are employed in devices such as drones, camera gimbals, computer cooling fans, and electric toothbrushes. These applications require compact and lightweight motors with low power consumption and precise control.
  • Home Appliances: Brushless motors find applications in various home appliances, including refrigerators, washing machines, air conditioners, and fans. They provide energy-efficient operation and contribute to the overall performance and longevity of these appliances.
  • Office Equipment: Brushless motors are used in printers, scanners, copiers, and other office equipment. They offer quiet operation, precise movement, and low power consumption, making them suitable for these applications.
  • Automotive Systems: Brushless motors are increasingly utilized in automotive systems, including HVAC blowers, power windows, seat adjustment mechanisms, and electric power steering. They provide efficient and reliable operation while minimizing power consumption.

2. High-Power Applications:

Brushless motors are also capable of meeting the demands of high-power applications, offering excellent performance and reliability. They are suitable for applications that require high torque, rapid acceleration, and precise control at elevated power levels. Some examples of high-power applications where brushless motors are commonly used include:

  • Electric Vehicles (EVs): Brushless motors are extensively employed in electric vehicles for propulsion and drivetrain systems. They offer high torque output, efficient power conversion, and precise control, enabling EVs to achieve high performance and extended range.
  • Aerospace and Aviation: Brushless motors find applications in aircraft systems such as flight control surfaces, landing gear actuation, and environmental control systems. These applications require high-power motors with reliable and precise motion control capabilities.
  • Industrial Automation: Brushless motors are utilized in industrial machinery and automation systems, including CNC machines, robotics, and conveyor systems. They provide high torque density, fast response times, and accurate positioning, enabling efficient and precise control in demanding industrial environments.
  • Marine and Propulsion Systems: Brushless motors are used in marine applications, such as electric propulsion systems for boats and ships. They offer high power output, durability, and resistance to harsh environmental conditions.

These examples demonstrate that brushless motors are versatile and can be applied across a wide spectrum of power requirements. Whether in low-power or high-power applications, brushless motors provide advantages such as high efficiency, precise control, low maintenance, and improved performance. The specific power requirements and performance criteria of an application will determine the selection and customization of brushless motors to ensure optimal performance and reliability.

brushless motor

In which industries are brushless motors commonly employed, and what are their key roles?

Brushless motors find applications in a wide range of industries, thanks to their numerous advantages and capabilities. Here are some of the industries where brushless motors are commonly employed and their key roles:

1. Automotive Industry:

In the automotive industry, brushless motors are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They play a crucial role in providing propulsion for these vehicles, driving the wheels and ensuring efficient power delivery. Brushless motors offer high efficiency, precise control, and fast acceleration, making them ideal for electric drivetrains. Additionally, they are employed in various automotive subsystems such as electric power steering, HVAC systems, cooling fans, and braking systems.

2. Aerospace and Aviation:

Brushless motors have significant applications in the aerospace and aviation sectors. They are used in aircraft systems such as flight control surfaces, landing gear actuation, fuel pumps, and environmental control systems. Brushless motors provide reliable and precise motion control in critical aerospace applications, contributing to the safety and efficiency of aircraft operations. Their high power-to-weight ratio, compact size, and high-speed capabilities make them well-suited for aerospace requirements.

3. Robotics and Automation:

Brushless motors are extensively employed in robotics and automation systems. They power robotic arms, joints, and grippers, enabling accurate and controlled movements. Brushless motors offer high torque, precise position control, and rapid acceleration, making them vital for industrial robotics, collaborative robots (cobots), and automated manufacturing processes. Their compact size and efficiency also contribute to the design and performance of robotic systems.

4. Industrial Machinery and Equipment:

Brushless motors play a crucial role in various industrial machinery and equipment. They are used in machine tools, conveyors, pumps, compressors, and other industrial automation applications. Brushless motors provide reliable and efficient motion control, contributing to the productivity and performance of industrial processes. Their ability to handle high loads, operate at high speeds, and offer precise control makes them valuable in demanding industrial environments.

5. Medical and Healthcare:

In the medical and healthcare sector, brushless motors are employed in various medical devices and equipment. They are used in surgical tools, prosthetics, medical pumps, laboratory equipment, imaging systems, and more. Brushless motors offer quiet operation, precise control, and compact size, making them suitable for applications where accuracy, reliability, and patient comfort are critical.

6. Consumer Electronics:

Brushless motors are found in numerous consumer electronic devices. They power computer cooling fans, hard disk drives, drones, camera gimbals, electric toothbrushes, and other portable devices. Brushless motors in consumer electronics provide efficient and reliable operation while minimizing noise and vibration. Their small size, lightweight, and high-speed capabilities contribute to the design and functionality of modern consumer electronic products.

These are just a few examples of the industries where brushless motors are commonly employed. Their efficiency, reliability, precise control, compact size, and high-performance characteristics make them versatile and valuable in many other sectors as well. As technology continues to advance, brushless motors are likely to find new applications and play increasingly important roles in various industries.

China supplier 80mm 48V High Speed High Torque Brushless DC Motor for Medical Equipment   vacuum pump oil near me		China supplier 80mm 48V High Speed High Torque Brushless DC Motor for Medical Equipment   vacuum pump oil near me
editor by CX 2024-04-22

China supplier 12V 24V 42BLDC High Speed 4000rpm Low Noise 26W Brushless Motor vacuum pump belt

Product Description

MODEL 42BLDC41-20340 42BLDC61-20540 42BLDC81-20840 42BLDC101-21040
Number of Poles 8 8 8 8
Number of Phases 3 3 3 3
Nominal Voltage(VDC) 24 24 24 24
Rated Speed(RPM) 4000 4000 4000 4000
Rated Torque(N.m) 0.0625 0.125 0.185 0.25
Rated Current(A) 1.8 3.5 5.2 6.6
Output Power(W) 26 52 78 105
Peak Torque(N.m) 0.18 0.38 0.55 0.75
Peak Current(A) 5.4 10.5 15.6 20
Torque Constant(N.m/A) 0.035 0.036 0.036 0. 0571
Back EMF(V/krpm) 2.45 2.71 2.74 2.62
Rotor Inertia(g.cm2) 24 48 72 96
Body Length(L) mm 41 61 81 100
Weight  (kg) 0.33 0.45 0.65 0.8

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Permanent Magnet
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 8
Customization:
Available

|

brushless motor

Where can individuals find reliable information and resources for learning more about brushless motors?

Individuals seeking reliable information and resources to learn more about brushless motors have several options available. Here are some recommended sources:

1. Manufacturer Websites:

Visit the websites of reputable brushless motor manufacturers. Manufacturers often provide detailed information about their products, including specifications, application guidelines, technical documentation, and educational resources. These websites can be a valuable source of accurate and up-to-date information about brushless motors.

2. Industry Associations and Organizations:

Explore industry associations and organizations related to electric motors, automation, or specific applications of brushless motors. These associations often provide educational materials, technical publications, webinars, and conferences that cover various aspects of motor technology. Examples include the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), or industry-specific associations like the Robotics Industries Association (RIA) or the Electric Motor Education and Research Foundation (EMERF).

3. Technical Forums and Online Communities:

Participate in technical forums and online communities focused on motors and related technologies. Platforms like Stack Exchange, Reddit, or specialized engineering forums often have dedicated sections where individuals can ask questions, learn from experts, and access valuable resources. Engaging with these communities can provide insights into real-world experiences and practical knowledge about brushless motors.

4. Books and Publications:

Consult books, textbooks, and technical publications that cover electric motors and motor control theory. Look for titles that specifically address brushless motor technology or broader topics such as electromechanical systems, power electronics, or mechatronics. Libraries, online bookstores, and academic institutions are good sources for finding relevant publications.

5. Online Tutorials and Courses:

Explore online tutorials and courses offered by educational platforms, engineering schools, or specialized training providers. Platforms such as Coursera, Udemy, or Khan Academy may offer courses related to electric motors, motor control, or mechatronics. These resources often provide structured learning experiences with video lectures, practical exercises, and assessments.

6. Research Papers and Technical Journals:

Access research papers and technical journals focused on electrical engineering, motor technology, or related fields. Platforms like IEEE Xplore, ResearchGate, or academic databases provide access to a wide range of scholarly articles and technical papers. These sources can offer in-depth knowledge about the latest advancements, research findings, and technical details related to brushless motors.

7. Industry Trade Shows and Exhibitions:

Attend industry trade shows and exhibitions that feature motor manufacturers, suppliers, and technology providers. These events often showcase the latest products, innovations, and advancements in motor technology. They also provide opportunities to interact with industry experts, attend technical presentations, and gather valuable information about brushless motors.

8. Online Product Catalogs and Datasheets:

Review online product catalogs and datasheets provided by motor manufacturers. These documents typically contain detailed specifications, performance data, and application notes for specific motor models. They can help individuals understand the capabilities, limitations, and features of different brushless motors.

Remember to critically evaluate the information obtained from various sources and cross-reference multiple resources to ensure accuracy and reliability. Brushless motor technology is a dynamic field, so staying updated with the latest research and industry developments is essential for gaining comprehensive knowledge.

brushless motor

Can brushless motors be used in both low-power and high-power applications?

Yes, brushless motors can be used in both low-power and high-power applications. The versatility and scalability of brushless motor technology allow them to be employed across a wide range of power requirements. Here’s how brushless motors are utilized in both low-power and high-power applications:

1. Low-Power Applications:

In low-power applications, brushless motors offer several advantages over other motor types. They are capable of delivering efficient and precise motion control even at low power levels. Some examples of low-power applications where brushless motors are commonly used include:

  • Consumer Electronics: Brushless motors are employed in devices such as drones, camera gimbals, computer cooling fans, and electric toothbrushes. These applications require compact and lightweight motors with low power consumption and precise control.
  • Home Appliances: Brushless motors find applications in various home appliances, including refrigerators, washing machines, air conditioners, and fans. They provide energy-efficient operation and contribute to the overall performance and longevity of these appliances.
  • Office Equipment: Brushless motors are used in printers, scanners, copiers, and other office equipment. They offer quiet operation, precise movement, and low power consumption, making them suitable for these applications.
  • Automotive Systems: Brushless motors are increasingly utilized in automotive systems, including HVAC blowers, power windows, seat adjustment mechanisms, and electric power steering. They provide efficient and reliable operation while minimizing power consumption.

2. High-Power Applications:

Brushless motors are also capable of meeting the demands of high-power applications, offering excellent performance and reliability. They are suitable for applications that require high torque, rapid acceleration, and precise control at elevated power levels. Some examples of high-power applications where brushless motors are commonly used include:

  • Electric Vehicles (EVs): Brushless motors are extensively employed in electric vehicles for propulsion and drivetrain systems. They offer high torque output, efficient power conversion, and precise control, enabling EVs to achieve high performance and extended range.
  • Aerospace and Aviation: Brushless motors find applications in aircraft systems such as flight control surfaces, landing gear actuation, and environmental control systems. These applications require high-power motors with reliable and precise motion control capabilities.
  • Industrial Automation: Brushless motors are utilized in industrial machinery and automation systems, including CNC machines, robotics, and conveyor systems. They provide high torque density, fast response times, and accurate positioning, enabling efficient and precise control in demanding industrial environments.
  • Marine and Propulsion Systems: Brushless motors are used in marine applications, such as electric propulsion systems for boats and ships. They offer high power output, durability, and resistance to harsh environmental conditions.

These examples demonstrate that brushless motors are versatile and can be applied across a wide spectrum of power requirements. Whether in low-power or high-power applications, brushless motors provide advantages such as high efficiency, precise control, low maintenance, and improved performance. The specific power requirements and performance criteria of an application will determine the selection and customization of brushless motors to ensure optimal performance and reliability.

brushless motor

What are the primary advantages of using brushless motors in various applications?

Brushless motors offer several advantages that make them preferred choices in various applications. Here are the primary advantages of using brushless motors:

1. High Efficiency:

Brushless motors are known for their high efficiency. The absence of brushes and commutators reduces friction and electrical losses, resulting in improved power conversion and energy efficiency. This efficiency translates into lower power consumption, reduced heat generation, and longer battery life in battery-powered applications. High efficiency makes brushless motors suitable for applications where energy efficiency is crucial, such as electric vehicles, renewable energy systems, and battery-operated devices.

2. Increased Reliability:

Brushless motors offer increased reliability compared to brushed motors. The lack of brushes and commutators eliminates common points of failure in brushed motors. Brushes can wear out and require periodic replacement, while commutators can experience electrical arcing and wear. By removing these components, brushless motors have longer lifespans, reduced maintenance requirements, and higher overall reliability. This advantage is particularly important in critical applications where downtime and maintenance costs must be minimized.

3. Precise Speed and Position Control:

Brushless motors provide precise speed and position control, making them suitable for applications that require accurate motion control. The electronic commutation in brushless motors allows for precise monitoring and adjustment of motor parameters, such as speed, torque, and direction. This level of control enables smooth and precise movements, making brushless motors ideal for robotics, CNC machines, automation systems, and other applications that demand precise positioning and motion control.

4. Compact Size and High Power Density:

Brushless motors have a compact design and high power density, making them suitable for applications where space is limited. The absence of brushes and commutators allows for a more streamlined motor design, reducing the overall size and weight of the motor. This compact size makes brushless motors ideal for applications with size constraints, such as drones, portable devices, and small appliances. Despite their compact size, brushless motors can deliver high power output, making them capable of driving demanding applications.

5. Reduced Electromagnetic Interference (EMI):

Brushless motors generate less electromagnetic interference (EMI) compared to brushed motors. The electronic commutation in brushless motors produces smoother and more controlled current waveforms, resulting in reduced EMI. This advantage is particularly important in applications where EMI can interfere with sensitive electronics or cause electromagnetic compatibility (EMC) issues. Brushless motors are commonly used in medical equipment, telecommunications, and audio/video equipment, where minimizing EMI is critical.

6. Higher Speed and Acceleration Capability:

Brushless motors offer higher speed and acceleration capabilities compared to brushed motors. The absence of brushes reduces friction and allows brushless motors to achieve higher rotational speeds. Additionally, the electronic commutation enables faster switching and control, resulting in faster acceleration and deceleration. These characteristics make brushless motors suitable for applications that require rapid movements, high-speed operation, and quick response times, such as robotics, industrial automation, and electric vehicles.

These advantages make brushless motors a preferred choice in a wide range of applications, including robotics, electric vehicles, aerospace, industrial automation, medical equipment, consumer electronics, and more. Their high efficiency, reliability, precise control, compact size, reduced EMI, and high-speed capabilities contribute to improved performance and enable innovative designs in various industries.

China supplier 12V 24V 42BLDC High Speed 4000rpm Low Noise 26W Brushless Motor   vacuum pump belt	China supplier 12V 24V 42BLDC High Speed 4000rpm Low Noise 26W Brushless Motor   vacuum pump belt
editor by CX 2024-04-12